Multitask-based association rule mining
dc.authorid | YILDIRIM, Pelin/O-6422-2019 | |
dc.authorid | Birant, Derya/U-6211-2017 | |
dc.contributor.author | Taşer, Pelin Yıldırım | |
dc.contributor.author | Birant, Kökten Ulaş | |
dc.contributor.author | Birant, Derya | |
dc.date.accessioned | 2022-02-15T16:58:38Z | |
dc.date.available | 2022-02-15T16:58:38Z | |
dc.date.issued | 2020 | |
dc.department | Bakırçay Üniversitesi | en_US |
dc.description.abstract | Recently, there has been a growing interest in association rule mining (ARM) in various fields. However,standard ARM algorithms fail to discover rules for multitask problems as they do not consider task-oriented investigationand, therefore, they ignore the correlation among the tasks. Considering this situation, this paper proposes a novelalgorithm, named multitask association rule miner (MTARM), that tends to jointly discover rules by considering multipletasks. This paper also introduces two novel concepts: single-task rule and multiple-task rule. In the first phase of theproposed approach, highly frequent local rules (single-task rules) are explored for each task separately and then theselocal rules are combined to produce the global result (multitask rules) using a majority voting mechanism. Experimentswere conducted on four different real-world multitask learning datasets. The experimental results indicated that theproposed MTARM approach discovers more information than that of traditional ARM algorithms by jointly consideringthe relationships among multiple tasks. | en_US |
dc.identifier.doi | 10.3906/elk-1905-88 | |
dc.identifier.endpage | 955 | en_US |
dc.identifier.issn | 1300-0632 | |
dc.identifier.issn | 1300-0632 | |
dc.identifier.issue | 2 | en_US |
dc.identifier.scopus | 2-s2.0-85085018559 | en_US |
dc.identifier.scopusquality | Q3 | en_US |
dc.identifier.startpage | 933 | en_US |
dc.identifier.trdizinid | TXpNMU1EazNOdz09 | en_US |
dc.identifier.uri | https://doi.org/10.3906/elk-1905-88 | |
dc.identifier.uri | https://app.trdizin.gov.tr/makale/TXpNMU1EazNOdz09 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14034/441 | |
dc.identifier.volume | 28 | en_US |
dc.identifier.wos | WOS:000522447800024 | en_US |
dc.identifier.wosquality | Q4 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.indekslendigikaynak | TR-Dizin | en_US |
dc.language.iso | en | en_US |
dc.relation.journal | Turkish Journal of Electrical Engineering and Computer Sciences | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Bilgisayar Bilimleri | en_US |
dc.subject | Yapay Zeka | en_US |
dc.subject | Bilgisayar Bilimleri | en_US |
dc.subject | Sibernitik | en_US |
dc.subject | Bilgisayar Bilimleri | en_US |
dc.subject | Donanım ve Mimari | en_US |
dc.subject | Bilgisayar Bilimleri | en_US |
dc.subject | Bilgi Sistemleri | en_US |
dc.subject | Bilgisayar Bilimleri | en_US |
dc.subject | Yazılım Mühendisliği | en_US |
dc.subject | Bilgisayar Bilimleri | en_US |
dc.subject | Teori ve Metotlar | en_US |
dc.subject | Mühendislik | en_US |
dc.subject | Elektrik ve Elektronik | en_US |
dc.subject | Association rule mining | en_US |
dc.subject | multitask learning | en_US |
dc.subject | data mining | en_US |
dc.subject | the frequent pattern (FP)-Growth algorithm | en_US |
dc.subject | Parallel | en_US |
dc.subject | Algorithms | en_US |
dc.subject | Classification | en_US |
dc.title | Multitask-based association rule mining | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- Multitask-based association rule mining.pdf
- Boyut:
- 729.14 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text