Age Estimation Using Machine Learning Algorithms with Parameters Obtained from X-ray Images of the Calcaneus

dc.authoridSECGIN, YUSUF/0000-0002-0118-6711
dc.authoridOner, Serkan/0000-0002-7802-880X
dc.contributor.authorCiftci, R.
dc.contributor.authorSecgin, Y.
dc.contributor.authorOner, Z.
dc.contributor.authorToy, S.
dc.contributor.authorOner, S.
dc.date.accessioned2025-03-20T09:50:29Z
dc.date.available2025-03-20T09:50:29Z
dc.date.issued2024
dc.departmentİzmir Bakırçay Üniversitesi
dc.description.abstractBackground:Determination of bone age is a critical issue for forensics, surgery, and basic sciences.Aim:This study aims to estimate age with high accuracy and precision using Machine Learning (ML) algorithms with parameters obtained from calcaneus x-ray images of healthy individuals.Method:The study was carried out by retrospectively examining the foot X-ray images of 341 people aged 18-65 years. Maximum width of the calcaneus (MW), body width (BW), maximum length (MAXL), minimum length (MINL), facies articularis cuboidea height (FACH), maximum height (MAXH), and tuber calcanei width (TKW) parameters were measured from the images. The measurements were then grouped as 20-45 years of age, 46-64 years of age, 65 and older, and age estimation was made by using these at the input of ML models.Results:As a result of the ML input of the measurements obtained, a 0.85 Accuracy (Acc) rate was obtained with the Extra Tree Classifier algorithm. The accuracy rate of other algorithms was found to vary between 0.78 and 0.82. The contribution of parameters to the overall result was evaluated by using the shapley additive explanations (SHAP) analyzer of Random Forest algorithm and the MAXH parameter was found to have the highest contribution in age estimation.Conclusions:As a result of our study, calcaneus bone was found to have high accuracy and precision in age estimations.
dc.identifier.doi10.4103/njcp.njcp_602_23
dc.identifier.endpage214
dc.identifier.issn1119-3077
dc.identifier.issn2229-7731
dc.identifier.issue2
dc.identifier.pmid38409149
dc.identifier.scopus2-s2.0-85186388522
dc.identifier.scopusqualityQ2
dc.identifier.startpage209
dc.identifier.urihttps://doi.org/10.4103/njcp.njcp_602_23
dc.identifier.urihttps://hdl.handle.net/20.500.14034/2216
dc.identifier.volume27
dc.identifier.wosWOS:001177325400003
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.indekslendigikaynakPubMed
dc.language.isoen
dc.publisherWolters Kluwer Medknow Publications
dc.relation.ispartofNigerian Journal of Clinical Practice
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WOS_20250319
dc.subjectAge estimation
dc.subjectcalcaneus
dc.subjectmachine learning algorithms
dc.subjectx-ray
dc.titleAge Estimation Using Machine Learning Algorithms with Parameters Obtained from X-ray Images of the Calcaneus
dc.typeArticle

Dosyalar