From indoor paths to gender prediction with soft clustering
dc.authorscopusid | 57202924825 | |
dc.authorscopusid | 8572344300 | |
dc.contributor.author | Doğan, Onur | |
dc.contributor.author | Öztayşi, Başar | |
dc.date.accessioned | 2022-02-15T16:57:33Z | |
dc.date.available | 2022-02-15T16:57:33Z | |
dc.date.issued | 2020 | |
dc.department | Bakırçay Üniversitesi | en_US |
dc.description.abstract | Customer-based practices enable benefits to organizations in a contentious business. Offering individualized proposals increase customer loyalty to be able to afloat. Understanding customers is a vital difficulty to perform personalized recommendations. As a demographic feature, gender information essentially cannot be captured by human tracking technologies. Hence, several procedures are improved to predict undiscovered gender information. In the research, the followed indoor paths in a shopping mall are used to predict customer genders using fuzzy c-medoids, one of the soft clustering techniques. A Levenshtein-based fuzzy classification methodology is proposed the followed paths as string data. Although some studies focused on gender prediction, no research has centered on path-oriented. The novelty of the investigation is to analyze customer path data for the gender classes. | en_US |
dc.description.sponsorship | Research Fund of the Istanbul Technical UniversityIstanbul Technical University [MGA-2019-41949] | en_US |
dc.description.sponsorship | This work was supported by Research Fund of the Istanbul Technical University. Project Number: MGA-2019-41949 | en_US |
dc.identifier.doi | 10.3233/JIFS-189116 | |
dc.identifier.endpage | 6538 | en_US |
dc.identifier.issn | 1064-1246 | |
dc.identifier.issn | 1875-8967 | |
dc.identifier.issue | 5 | en_US |
dc.identifier.scopus | 2-s2.0-85096955754 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.startpage | 6529 | en_US |
dc.identifier.uri | https://doi.org/10.3233/JIFS-189116 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14034/203 | |
dc.identifier.volume | 39 | en_US |
dc.identifier.wos | WOS:000595520600046 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | IOS Press | en_US |
dc.relation.journal | Journal Of Intelligent & Fuzzy Systems | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Gender prediction | en_US |
dc.subject | string classification | en_US |
dc.subject | soft clustering | en_US |
dc.subject | path classification | en_US |
dc.subject | levenshtein | en_US |
dc.subject | fuzzy c-medoids | en_US |
dc.subject | Fuzzy | en_US |
dc.subject | Bluetooth | en_US |
dc.subject | Behavior | en_US |
dc.subject | Tracking | en_US |
dc.subject | Trajectories | en_US |
dc.subject | Recognition | en_US |
dc.subject | System | en_US |
dc.title | From indoor paths to gender prediction with soft clustering | en_US |
dc.type | Article | en_US |