From indoor paths to gender prediction with soft clustering

Küçük Resim Yok

Tarih

2020

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

IOS Press

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Customer-based practices enable benefits to organizations in a contentious business. Offering individualized proposals increase customer loyalty to be able to afloat. Understanding customers is a vital difficulty to perform personalized recommendations. As a demographic feature, gender information essentially cannot be captured by human tracking technologies. Hence, several procedures are improved to predict undiscovered gender information. In the research, the followed indoor paths in a shopping mall are used to predict customer genders using fuzzy c-medoids, one of the soft clustering techniques. A Levenshtein-based fuzzy classification methodology is proposed the followed paths as string data. Although some studies focused on gender prediction, no research has centered on path-oriented. The novelty of the investigation is to analyze customer path data for the gender classes.

Açıklama

Anahtar Kelimeler

Gender prediction, string classification, soft clustering, path classification, levenshtein, fuzzy c-medoids, Fuzzy, Bluetooth, Behavior, Tracking, Trajectories, Recognition, System

Künye