Gender Prediction Using Cone-Beam Computed Tomography Measurements from Foramen Incisivum: Application of Machine Learning Algorithms and Artificial Neural Networks

dc.authoridDUMAN, SUAYIP BURAK/0000-0003-2552-0187
dc.contributor.authorSenol, Deniz
dc.contributor.authorSecgin, Yusuf
dc.contributor.authorHarmandaoglu, Oguzhan
dc.contributor.authorKaya, Seren
dc.contributor.authorDuman, Suayip Burak
dc.contributor.authorOner, Zuelal
dc.date.accessioned2025-03-20T09:50:29Z
dc.date.available2025-03-20T09:50:29Z
dc.date.issued2024
dc.departmentİzmir Bakırçay Üniversitesi
dc.description.abstractIntroduction: This study aims to predict gender using parameters obtained from images of the foramen (for.) incisivum through cone-beam computed tomography (CBCT) and employing machine learning (ML) algorithms and artificial neural networks (ANN).Materials and Methods: This study was conducted on 162 individuals in total. Precise measurements were meticulously extracted, extending from the foramen incisivum to the arcus alveolaris maxillaris, through employment of CBCT. The ML and ANN models were meticulously devised, allocating 20% for rigorous testing and 80% for comprehensive training.Results: All parameters that are evaluated, except for the angle between foramen palatinum majus and foramen incisivum-spina nasalis posterior (GPFIFPNS-A), exhibited a significant gender difference. ANN and among the ML algorithms, logistic regression (LR), linear discriminant analysis (LDA), and random rorest (RF) demonstrated the highest accuracy (Acc) rate of 0.82. The Acc rates for other algorithms ranged from 0.76 to 0.79. In the models with the highest Acc rates, 14 out of 17 male individuals and 13 out of 16 female individuals in the test set were correctly predicted.Conclusion: LR, LDA, RF, and ANN yielded high gender prediction rates for the measured parameters, while decision tree, extra tree classifier, Gaussian Naive Bayes, quadratic discriminant analysis, and K-nearest neighbors algorithm methods provided lower predictions. We believe that the evaluation of measurements extending from foramen incisivum to arcus alveolaris maxillaris through CBCT scanning proves to be a valuable method in gender prediction.
dc.identifier.doi10.4103/jasi.jasi_129_23
dc.identifier.endpage159
dc.identifier.issn0003-2778
dc.identifier.issn2352-3050
dc.identifier.issue2
dc.identifier.scopus2-s2.0-85197634487
dc.identifier.scopusqualityQ4
dc.identifier.startpage152
dc.identifier.urihttps://doi.org/10.4103/jasi.jasi_129_23
dc.identifier.urihttps://hdl.handle.net/20.500.14034/2218
dc.identifier.volume73
dc.identifier.wosWOS:001265652200015
dc.identifier.wosqualityQ4
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherWolters Kluwer Medknow Publications
dc.relation.ispartofJournal of The Anatomical Society of India
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WOS_20250319
dc.subjectArtificial intelligence
dc.subjectforamen incisivum
dc.subjectforensic anthropology
dc.subjectgender prediction
dc.subjectmachine learning
dc.subjectmaxilla
dc.titleGender Prediction Using Cone-Beam Computed Tomography Measurements from Foramen Incisivum: Application of Machine Learning Algorithms and Artificial Neural Networks
dc.typeArticle

Dosyalar