Artificial intelligence approaches to estimate the transport energy demand in Turkey
dc.authorid | Eliiyi, Ugur / 0000-0002-5584-891X | |
dc.authorid | Turgut, Mert Sinan / 0000-0002-5739-2119 | |
dc.authorid | Oner, Erdinc / 0000-0002-0503-7588 | |
dc.authorscopusid | 56228320400 | |
dc.authorscopusid | 55246084100 | |
dc.authorscopusid | 57200158463 | |
dc.authorscopusid | 12785199900 | |
dc.authorscopusid | 14521079300 | |
dc.authorwosid | Eliiyi, Ugur/Q-1810-2019 | |
dc.authorwosid | Oner, Erdinc/M-4420-2017 | |
dc.contributor.author | Turgut, Mert Sinan | |
dc.contributor.author | Eliiyi, Uğur | |
dc.contributor.author | Turgut, Oğuz Emrah | |
dc.contributor.author | Öner, Erdinç | |
dc.contributor.author | Eliiyi, Deniz Türsel | |
dc.date.accessioned | 2022-02-15T16:58:45Z | |
dc.date.available | 2022-02-15T16:58:45Z | |
dc.date.issued | 2021 | |
dc.department | Bakırçay Üniversitesi | en_US |
dc.description.abstract | In this study, eight parameters are selected and their historical data are collected to predict the future of the energy demand of Turkey. The initial eight parameters were the gross domestic product (GDP) of Turkey, average annual US crude oil price (COP), inflation for Turkey in percentages (INF), the population of Turkey, total vehicle travel in kilometers for Turkey, total amount of goods transported on motorways, employment for Turkey, and trade of Turkey. However, after these eight parameters data are analyzed using Pearson and Spearman correlation methods, it is found out that five of these parameters are highly correlated. The remaining three parameters are the GDP of Turkey, COP, and INF for Turkey. Afterward, five separate scenarios are developed to forecast the future of the energy demand of Turkey. The first two scenarios involve the third- and fourth-order polynomial fitting, the third and fourth scenarios employ static and recurrent neural networks, and the fifth scenario utilizes autoregressive models to predict the future energy demand of Turkey. The efficient hybridization of the seagull optimization and very optimistic method of minimization metaheuristic algorithms is carried out to achieve the polynomial fitting of the data. The optimization performance of the hybrid algorithm is assessed by applying the algorithm on benchmark optimization problems and comparing the results with that of some other metaheuristic optimizers. Moreover, it is seen that the forecasts of the first scenario agree well with the Ministry of the Energy and Natural Resources estimates. | en_US |
dc.identifier.doi | 10.1007/s13369-020-05108-y | |
dc.identifier.endpage | 2476 | en_US |
dc.identifier.issn | 2193-567X | |
dc.identifier.issn | 2191-4281 | |
dc.identifier.issue | 3 | en_US |
dc.identifier.scopus | 2-s2.0-85098572971 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.startpage | 2443 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s13369-020-05108-y | |
dc.identifier.uri | https://hdl.handle.net/20.500.14034/461 | |
dc.identifier.volume | 46 | en_US |
dc.identifier.wos | WOS:000604546300028 | en_US |
dc.identifier.wosquality | Q2 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer Heidelberg | en_US |
dc.relation.journal | Arabian Journal For Science And Engineering | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Seagull algorithm | en_US |
dc.subject | VOMMI algorithm | en_US |
dc.subject | Transport energy demand | en_US |
dc.subject | Time series prediction | en_US |
dc.subject | Forecasting | en_US |
dc.subject | Optimization Algorithm | en_US |
dc.subject | Firefly Algorithm | en_US |
dc.subject | Consumption | en_US |
dc.subject | Gdp | en_US |
dc.subject | Prediction | en_US |
dc.subject | Model | en_US |
dc.title | Artificial intelligence approaches to estimate the transport energy demand in Turkey | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- Artificial Intelligence Approaches to Estimate the Transport Energy Demand in Turkey.pdf
- Boyut:
- 8.33 MB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text