Yazar "Can, N." seçeneğine göre listele
Listeleniyor 1 - 20 / 30
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Adsorption of thorium (IV) ions by metal ion doped ZnO nanomaterial prepared with combustion synthesis: Empirical modelling and process optimization by response surface methodology (RSM)(Pergamon-Elsevier Science Ltd, 2021) Kaynar, Ümit H.; Kaynar, S. Cam; Karalı, E. Ekdal; Ayvacıklı, M.; Can, N.Environmental problems have reached enormous dimensions, driving efforts to remove and recycle waste from energy and industrial production. In particular, removing the radionuclide contamination that occurs as the nuclear industry grows is difficult and costly, but it is vital. Technologic and economical methods and advanced facilities are needed for the separation and purification of radioactive elements arising from the nuclear industry and uranium and thorium mining. With the adsorption method, which is the most basic separation and recovery method, the use of high-capacity nanomaterials has recently gained great importance in reducing the activity of the waste, reducing its volume by transforming it into solid form, and recovering and removing liquid radioactive wastes that might harm the ecological environment. This study aimed to determine the adsorption properties of metal ion-doped nano ZnO (nano-ZnO:Al) material synthesized by the microwave-assisted gel combustion method for the adsorption of thorium (IV) from aqueous media. First, characterization processes such as XRD, SEM, BET and zeta potential were performed to observe changes in the host ZnO adsorbent structure caused by the doping process. Later, this was optimized via the response surface method (RSM), which is widely used in the characterization of the adsorption properties of thorium (IV) from aqueous solutions. Such characterization is commonly used in industrial research. We tested how pH (3-8), temperature (20-60 degrees C), Th (IV) concentration (25-125 mg/L) and adsorbent amount (0.01-0.1 g) affect adsorption efficiency. The best possible combinations of these parameters were determined by RSM. It was calculated by RSM that the design fits the second order (quadratic) model using the central composite design (CCD) for the design of experimental conditions. R-2 and R-2 adjusted values from the parameters showing the model fit were 0.9923 and 0.9856, respectively. According to the model, the experimental adsorption capacity was 192.3 mg/g for the doped-ZnO nanomaterial under the theoretically specified optimum conditions. Also, the suitability of Th (IV) adsorption to isotherms was examined and thermodynamic parameters were calculated.Öğe Anomalous dose behaviour of thermoluminescence glow curves and kinetic analysis of beta irradiated YAl3(BO3)4:Tb phosphor(Pergamon-Elsevier Science Ltd, 2023) Souadi, G.; Bulcar, K.; Kaynar, Umit H.; Ayvacikli, M.; Topaksu, M.; Cam-Kaynar, S.; Can, N.With the aid of thermoluminescence (TL), we have extensively studied YAl3(BO3)4 host matrices incorporated with Tb3+ at different doping contents, which have been produced by combustion. The measured the TL glow curves exposed to beta rays at different doses consisted of four broad peaks located at around 76, 126, 230, and 378 degrees C. The peak maximum of the 230 degrees C TL peak shifts toward higher temperatures after 5 Gy beta irradiation while the other peak maxima almost remain constant. It is peculiar that 230 degrees C peak maximum shifts to higher temperatures with increased radiation dose and can be attributed to the multiple phases of the sample. A TL glow curve exhibits a proportional increase in intensity with increased the heating rate. A discussion of the possible causes of this pattern is provided. Observed peaks using the TmTstop method are due to the presence of a quasicontinuous distribution of traps. The parameters of the traps have also been estimated using various heating rate methods in excellent agreement with one another.Öğe Anomalous heating rate and kinetic analysis in the thermoluminescence of GdCa4O(BO3)3(Pergamon-Elsevier Science Ltd, 2025) Alajlani, Y.; Oglakci, M.; Barad, A.; Kaynar, U. H.; Topaksu, M.; Canimoglu, A.; Can, N.This study investigates the thermoluminescence (TL) properties of GdCa4O(BO3)3 phosphors under beta irradiation, highlighting their potential for dosimetric applications. A prominent glow peak at 175 degrees C was observed, demonstrating consistent sensitivity under preheating conditions. TL glow peaks were studied using variable heating rate (VHR), Tm-Tstop, initial rise (IR), and computerized glow curve deconvolution (CGCD) methods. Eight distinct trap levels with activation energies ranging from 0.92 to 1.28 eV were identified, confirming the material's diverse trap-depth distribution. The dose-response behavior exhibited superlinear characteristics, with a minimum detectable dose (MDD) of 74.4 mGy, making it suitable for low-dose monitoring. Observed anomalous heating rate effects were explained using the semi-localized transition (SLT) model. These findings position GdCa4O(BO3)3 as a promising candidate for luminescence-based technologies.Öğe Cathodoluminescence and photoluminescence properties of Dy doped La2CaB10O19 phosphor(Elsevier, 2020) Ayvacıklı, M.; Kaynar, Ümit H.; Karabulut, Y.; Guinea, J. Garcia; Doğan, T.; Can, N.In this study, we report a detailed analysis of the photoluminescence (PL) and cathodoluminescence (CL) properties of La2CaB10O19 (LCB) doped with Dy ion. Dy doped LCB materials were successfully synthesized using a sol-gel combustion method. Dy doped LCB has the monoclinic structure with lattice parameters a = 11.02067 angstrom, b = 6.55755 angstrom, c = 9.10541 angstrom and alpha = gamma = 90.00, and 13 = 91.49?. Under the excitation by a low voltage electron beam and pulse laser at 349 nm, the LCB:Dy3+ phosphor produces the characteristic emission bands of Dy3+ due to intra-configuration transitions of F-4(9/2) -> H-6(15/2) (480 nm, blue), F-4(9/2) -> H-6(13/2) (574 nm, yellow), F-4(9/2) -> H-6(11/2) (662 nm, red) and F-4(9/2) -> H-6(9/2) (752 nm, red). The concentration quenching phenomenon was observed in both CL and PL measurements and optimum doping concentration was estimated to be 2%. We suggest that the concentration quenching mechanism of intense yellow emission at 574 nm was attributed to dipole-dipole interaction for both CL and PL.Öğe Cathodoluminescence properties of La2MoO6:Ln3+ (Ln: Eu, Dy, and Sm) phosphors(Elsevier Ltd, 2020) Ayvacıklı, M.; Kaynar, Ümit H.; Karabulut, Y.; Guinea, J.G.; Bulcar, K.; Can, N.La2MoO6 orange-red phosphors with high efficiency incorporated with Eu, Dy and Sm have been synthesized through a gel combustion method. The influences of rare earth doping in synthesized samples were analysed by X-ray diffraction (XRD), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), and cathodoluminescence. Rare earth doped La2MoO6 samples show strong emission bands in the range of 400–750 nm and optimal doping concentration for all samples was 2 mol%. La2MoO6 host doped Eu ion showed intense and predominant emission peaks in 450–750 nm range. The electrical multipolar interaction contributed to the non-radiative energy transfer between Eu3+ ions in La2MoO6 host matrix. Sm doped La2MoO6 host exhibited orange-red CL emission peaks at 564, 608, 652 and 708 nm La2MoO6:Dy3+ phosphor displayed emissions at 484, 574 and 670 nm, respectively. The observed intense and sharp emission peaks indicate that La2MoO6 is promising host for lanthanides doped phosphor materials in the applications of optoelectronic. © 2020 Elsevier LtdÖğe Characterization, room and low temperature photoluminescence of yttrium aluminium borate activated with Sm3+ions(Pergamon-Elsevier Science Ltd, 2023) Madkhli, A. Y.; Kaynar, U. H.; Coban, M. B.; Ayvacikli, M.; Canimoglu, A.; Can, N.In this study, the combustion method assisted by urea that is ideally suited to economic and time saving was used for the synthesizing of reddish orange emitting YAl3(BO3)4 phosphor samples doped with various Sm3+ ions (from 0.01 wt% to 7wt%). A detailed study of the structural and luminescence properties at room/low tem-perature of the synthesized samples was performed. XRD analysis revealed a rhombohedral structure with an R32 space group (155). The particle size was determined by the Scherrer's method to be 48 nm. The visible PL emission spectra upon excitation at 359 nm are recorded and four emission peaks around 564, 599, 646, and 707 nm with transitions 4G5/2 -> 6H5/2, 4G5/2 -> 6H7/2, 4G5/2 -> 6H9/2 and 4G5/2 -> 6H11/2 are observed. Concentration quenching was mainly caused by dipole-dipole interactions between neighbouring trivalent Sm3+ ions. Through the CIE chroma coordinates (0.606, 0.382), the optimized sample (x = 0.03) demonstrates admirable luminous performance. YAl3(BO3)4:Sm3+ can be a good candidate for use as a red component for lighting applications.Öğe Comprehensive study of photoluminescence and cathodoluminescence of Eu and Tb doped Mg2SiO4 prepared via a solid-state reaction technique(Elsevier, 2020) Uçar, Z. G. Portakal; Akça, S.; Doğan, T.; Halefoğlu, Y. Z.; Kaynar, Ümit H.; Ayvacıklı, M.; Can, N.We report narrow-band green-red emitting Mg2SiO4 phosphors successfully synthesized through solid-state reaction method, and the cathodoluminescence (CL) and photoluminescence (PL) properties of the samples were investigated in detail. Under electron beam and 275 nm excitation, Mg2SiO4 phosphors doped with various Eu3+ and Tb3+ concentrations in the range of 1 mol % up to 10 mol % exhibit typical green and red emissions, respectively. Tb doped samples were efficiently excited by a low voltage electron beam and UV light, yielding several emission peaks between 370 and 760 nm, and produced a bright green light peaking at 541 nm due to the D-5(4) -> F-7(5) transition. Eu3+ doped samples exhibited CL and PL emission spectra from D-5(0) to F-7(j) manifold transitions of Eu3+. A strong red-light emission peaking at 610 nm also supports the incorporation of Eu3+ ions. A concentration quenching effect was observed and discussed for both phosphors. The optimal doping concentration of Eu3+ and Tb3+ doped phosphors was 7 mol %. In view of the outstanding performance in the PL and CL, the Mg2SiO4:Eu3+, Tb3+ can be considered as a promising green and red phosphor in solid-state lighting applications.Öğe Dy3+and Eu3+co-activated gadolinium aluminate borate phosphor: Synthesis, enhanced luminescence, energy transfer and tunable color(Pergamon-Elsevier Science Ltd, 2023) Madkhali, O.; Kaynar, Umit H.; Kaynar, S. Cam; Ayvacikli, M.; Can, N.The synthesis of GdAl3(BO3)4 phosphors incorporated with activators of Dy3+ and Dy3+/ Eu3+was successful and achieved through the gel combustion method. Powder X-ray diffraction (XRD) was employed to identify phase purity and the effects of dopant concentration on the crystallographic structure. The results of Photo-luminescence (PL) measurements revealed that the intensity and lifetime of luminescence properties varied depending on the concentrations of Dy3+ and Eu3+ ions. The dependence of luminescence intensity on doping concentration is investigated with respect to the energy transfer process between Eu3+ and Dy3+ ions. A decrease in luminescence lifetime occurs with increasing concentrations of Eu3+ co-doping. The energy transfer was also investigated using decay curve analysis. The co-doping of Eu3+ significantly boosts the energy transfer efficiency from 26% to 84%. These findings make GdAl3(BO3)4: Dy3+, Eu3+ phosphors an ideal choice for LED applications in solid state lighting and displays.Öğe Enhanced luminescence and quenching mechanisms in Na⁺ Co-doped K₇CaY₂(B₅O₁₀)₃:Tb3+ phosphors under UV radiation(Elsevier Ltd, 2025) Alsam, Amani A.; Kaynar, U.H.; Aydin, H.; Coban, M.B.; Canimoglu, A.; Can, N.This study investigates the structural and luminescent properties UV radiation of Tb³⁺-doped K₇CaY₂(B₅O₁₀)₃ (KCYBO) phosphors prepared using a microwave-assisted sol-gel method, with a focus on the impact of Na⁺ co-doping. Tb³⁺ ions were effectively integrated as evidenced by X-ray diffraction (XRD) and Rietveld analysis, without disrupting the crystal structure. Photoluminescence (PL) analysis showed intense green emissions at 542 nm, which are due to the 5D₄ → 7F₅ transition in Tb³⁺. Optimal luminescence was observed at 3 wt% Tb³⁺, beyond which concentration quenching effect was driven by non-radiative cross-relaxation between adjacent Tb³⁺ ions. Na⁺ co-doping enhanced PL intensity by improving energy transfer and reducing non-radiative losses. CIE chromaticity coordinates demonstrated a tunable color shift towards warmer tones with increasing Na⁺ concentration. Thermal stability was assessed through the Arrhenius equation, with an activation energy of 0.31 eV, indicating the material's potential for high-temperature optoelectronic applications. © 2024 Elsevier LtdÖğe Enhanced luminescence of Eu3+ in LaAl2B4O10 via energy transfer from Dy3+ doping(Pergamon-Elsevier Science Ltd, 2024) Kaynar, U. H.; Coban, M. B.; Hakami, Jabir; Altowyan, Abeer S.; Aydin, H.; Ayvacikli, M.; Can, N.In this study, an investigation was conducted on the structural and photoluminescence (PL) characteristics of LaAl2B4O10 (LAB) phosphors initially incorporated with Dy3+ and Eu3+ ions. Subsequently, the impact of varying Eu3+ concentration while maintaining a constant Dy3+ concentration was examined. Structural characterization was performed using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and energy-dispersive X-ray spectroscopy (EDS). XRD analysis confirmed the effective embedding of both dopants into the hexagonal framework of the LAB. The PL emission spectra revealed characteristic emissions of Dy3+ (blue and yellow) and Eu3+ (red) ions. The optimized dopant concentrations of both Dy3+ and Eu3+ were observed to be 3 wt%. The dominant mechanism for concentration quenching in doped LAB phosphors was determined to be the electric dipole-dipole interaction. Co-doping with Eu3+ led to a substantial decrease in Dy3+ emission intensity (similar to 0.18-fold) while enhancing Eu3+ emission intensity (similar to 3.72-fold). The critical energy transfer distance (R-C = 11.64 & Aring;) and the analysis based on the Dexter theory confirmed that the energy transfer mechanism corresponds to dipole-dipole interaction. The color purities and correlated color temperatures (CCT) were estimated, suggesting the potential of these phosphors for warm white and red lighting applications, respectively. The observed energy transfer and luminescence properties, along with the structural and compositional characterization, highlight the promising potential of LAB:Dy3+/Eu3+ co-doped phosphors for advanced lighting and display technologies.Öğe Enhancing the blue luminescence behaviour of the Li co -doped novel phosphor ZnB 2 O 4: Tm 3+(Elsevier Science Sa, 2020) Kücük, N.; Kaynar, Ümit H.; Akça, S.; Alajlani, Y.; Yin, L.; Wang, Y.; Can, N.[No Abstract Available]Öğe Influence of laser excitation power on temperature-dependent luminescence behaviour of Ce- and Tb-incorporated BaMgAl10O17 phosphors(Pergamon-Elsevier Science Ltd, 2020) Kaynar, Ümit H.; Kaynar, S. Cam; Ayvacıklı, M.; Karabulut, Y.; Souadi, G. O.; Can, N.BaMgAl10O17 (BAM) is a highly suitable host lattice for various rare earth ions with excellent luminescence properties in different spectral regions, including a strong photoluminescence (PL) emission from the visible spectral region. A new Ce- and Tb-incorporated BaMgAl10O17 phase was synthesized successfully using a wet combustion method and it was studied as a function of the temperature and laser excitation power. We further characterize the obtained phosphors with X-ray diffraction at room temperature. Different fuel/oxidant (f/o) ratios were introduced to investigate the optimum synthesis conditions for the BAM phosphors and optimum ratio was found out to be 8. The photoluminescence (PL) spectra were collected under the excitation light generated by a Nd:YLF pulse laser at 349 nm as the temperature was increased from 10 K to 300 K. A strong green emission of Tb3+ was observed in the green region of the spectrum due to the D-5(4)-> F-7(J) transition. We also observed a wide emission band from the Ce3+ ion in the wavelength range of 350-650 nm. The luminescence intensities of all phosphors exhibited different patterns with an increase in the temperature. We also evaluated how the PL spectrum of the rare earth-activated BAM host matrix shifts under various laser excitation powers. The PL intensity of Ce-activated BAM significantly shifted (similar to 30 A) to the blue region of the spectrum with an increase in the laser excitation power, however we did observed no shift forTb(3+) activated BAM. The present findings suggest that Tb-incorporated BaMgAl10O17 can be effective as a green phosphor candidate material with a wide range of applications.Öğe Luminescence of undoped and Eu3+activated zinc gallate phosphor: Synthesis, unusual intense 5D0 ? 7F4 red emission(Pergamon-Elsevier Science Ltd, 2023) Souadi, G.; Kaynar, Umit H.; Ayvacikli, M.; Can, N.A series of Eu3+-doped ZnGa2O4 samples were synthesized via the urea-glycine combustion route. Powder X-ray diffraction (XRD) was used to investigate the crystallinity of the samples, energy dispersive spectroscopy (EDS) to explore the elemental composition, Fourier transform infrared (FTIR), to observe the vibrational modes of the samples, photoluminescence (PL) to determine the luminescence properties. The XRD data prove that the samples remain single cubic structure even at high concentrations of Eu3+, enabling the formation of a unique emission spectrum. The active ion concentration was varied to examine the influence of concentration on luminescent properties. This study revealed a 5D0 & RARR;7F4 transition located at 700 nm with unusual intensity that has not been documented in the literature, which suggests that the active ion concentration can influence the luminescent characteristics of the phosphors. The increasing Eu3+ content increases the number of Eu3+ ions in ZnGa2O4 host lattice, which enhances the luminescence efficiency of the phosphor. However, beyond a certain level of Eu3+content (i.e., 3 wt% Eu3+), the number of Eu3+ ions becomes excessive, resulting in a reduction in luminescence efficiency due to concentration quenching. The dipole dipole interaction is elucidated to play a prominent role in the mechanism of Eu3+ quenching in the ZnGa2O4. An assessment of color coordinates based on emission spectra reveals that the coordinates shift from blue to the white light region, and then to red as Eu3+ content increases. This suggests that there is a substantial relationship between the Eu3+ concentration and the measured color coordinates.Öğe Novel Dy incorporated Ca3Y2B4O12 phosphor: Insights into the structure, broadband emission, photoluminescence and cathodoluminescence characteristics(Pergamon-Elsevier Science Ltd, 2022) Qaisi, Aziza H.; Kaynar, U. H.; Ayvacikli, M.; Garcia-Guinea, J.; Alajlani, Y.; Topaksu, M.; Can, N.This study reports cathodoluminescence (CL) and photoluminescence (PL) properties of undoped borate Ca3Y2B4O12 and Ca3Y2B4O12:x Dy3+ (x = 0.5, 1, 2, 3, 5, and 7) synthesized by gel combustion method. Micro-X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), CL and PL under electron beam and 359 nm pulse laser excitation, respectively were used to investigate characterization and luminescence studies of synthesized samples in the visible wavelength. As-prepared samples match the standard Ca3Y2BO4 phase that belongs to the orthorhombic system with space group Pnma (62) based on XRD results. Under electron beam excitation, this borate host shows a broad band emission from about 250 to 450 nm, peaked at 370 nm which is attributed to NBHOC. All as-prepared phosphors exhibited the characteristic PL and CL emissions of Dy3+ ions corresponding to F-4(9/2)-> H-6(J) transitions when excited with laser at 359 nm. The CL emission spectra of phosphors were identical to those of the PL spectra. Concentration quenching occurred when the doping concentration was 1 mol% in both the CL and PL spectra. The underlying reason for the concentration quenching phenomena observed in the discrete orange-yellow emission peaked at 574 nm of Dy3+ ion-doped Ca3Y2B4O12 phosphor is also discussed. According to these data, we can infer that this new borate can be used as a yellow emitting phosphor in solid-state illumination.Öğe Optical performance and luminescence properties of Dy3+-doped LaMgB5O10 phosphors(Elsevier, 2025) Hakami, Jabir; Kaynar, U. H.; Coban, M. B.; Aydin, H.; Alamri, R.; Jabali, D. A.; Can, N.Despite significant advancements in borate-based phosphors, improving luminescent efficiency and thermal stability, particularly at high temperatures, remains a persistent challenge. In this study, Dy3+-doped LaMgB5O10 (LMBO) phosphors were synthesized and characterized for their photoluminescent properties to address these issues. Under 344 nm excitation, the Dy3+-activated LMBO phosphors exhibited strong luminescence with characteristic peaks at 482 nm (blue), 578 nm (yellow), and 663 nm (red), corresponding to specific Dy3+ transitions. Optimal luminescence was achieved at a doping level of 2 wt% Dy3+, beyond which quenching effects reduced emission intensity. The critical quenching distance (Rc) was estimated at 24.66 & Aring;, indicating predominant non-radiative energy transfer. Moreover, thermal quenching was reduced, with the activation energy for thermal quenching determined to be 0.1975 eV, demonstrating that the material can maintain reasonable luminescence efficiency at elevated temperatures. Time-resolved photoluminescence spectroscopy revealed multi-exponential decay behavior, indicating the presence of multiple decay processes. The average luminescence lifetimes were calculated as 632 mu s for the 2 wt% Dy3+ sample and 539 mu s for the 3 wt% Dy3+ sample, with a clear concentration quenching effect observed at higher dopant levels. Colorimetric analysis in the CIE 1931 color space revealed a shift toward yellow with increasing Dy3+ concentration, achieving a correlated color temperature (CCT) of 6595 K at 2 wt% Dy3+. This shift supports the material's potential for photonic and lighting applications. These findings highlight a significant advancement in addressing the thermal stability issue in phosphor materials, making Dy3+-doped LMBO phosphors promising candidates for advanced photonic technologies.Öğe Phase transition and luminescence characteristics of dysprosium doped strontium stannate phosphor synthesized using hydrothermal method(Elsevier Sci Ltd, 2023) Kaynar, Umit H.; Coban, M. B.; Madkhli, A. Y.; Ayvacikli, M.; Can, N.A series of strontium stannate (SrSnO3) doped with Dy3+ ions at various wt % concentrations (1, 2, 3 and 5) were synthesized via hydrothermal reaction and analysed using X-ray diffraction (XRD), energy dispersive spectros-copy (EDS), environmental electron scanning microscope (ESEM), photoluminescence (PL) and, cath-odoluminescence (CL). The XRD results confirmed that all samples were assigned to cubic perovskite-type SrSnO3 structured with the Pm3m space group. The PL emission spectrum of Dy3+ activated samples consisted of some characteristic peaks located at 481 nm, 572 nm, 660 nm and 753 nm, corresponding to (4F9/2 -> 6H15/2, blue), (4F9/2 -> 6H13/2, yellow), 660 nm (4F9/2 -> 6H11/2, red) and 753 nm (4F9/2 -> 6H9/2, red) transitions. The PL emission line intensity is gradually enhanced with an increase in doping concentration up to 3 wt %, followed by concentration quenching. The confinement effects of localized resonant energy transfer might cause higher concentration quenching. PL emission spectra were affected by the temperature range from 10 K to 300 K. PL emission anomalies at 270 K in SrSnO3:Dy3+ have been reported to be consistent with a structural phase tran-sition at this temperature. This work confirms Singh et al.'s observation, revealing that SrSnO3 has a phase transition at 270 K.Öğe Synthesis and beta particle excited thermoluminescence of BaSiF6 phosphor(Pergamon-Elsevier Science Ltd, 2022) Souadi, G. O.; Akça Özalp, S.; Karalı, E. Ekdal; Kaynar, Ümit H.; Ayvacıklı, M.; Topaksu, M.; Can, N.BaSiF6 phosphor was synthesized by a gel combustion method. The crystalline size was found to be 54.17 +/- 4.36 nm using Williamson-Hall (W-H) approximation. The TL data collected by means of a combination of a commercial BG39 and HC575/25 filters was studied to evaluate basic kinetic parameters. Three TL glow peaks of BaSiF6 phosphors are centered at around 84, 190 and 322 degrees C. T-m-T-stop, various heating rate (VHR) and computerized glow-curve deconvolution (CGCD) method were utilized to analyse collected data. Our findings indicate that luminescence process in scrutinized material may obey second order kinetics. The TL dose response of the TL glow peaks exhibits a linear characteristic up to 100 Gy. Deconvolution of the glow curve reveals that the number of the component TL glow peaks in the complex glow curve is composed of well-isolated six overlapping glow peaks. The FOM value is 2.32.Öğe Synthesis and competitive luminescence quenching mechanism of Ca(3)Al(2)O(6)Ln(3+)(Ln: Dy and Sm) phosphors(Pergamon-Elsevier Science Ltd, 2020) Bakr, M.; Kaynar, Ümit H.; Ayvacıklı, M.; Benourdja, S.; Karabulut, Y.; Hammoudeh, A.; Can, N.Sm3+ and Dy3+ activated Ca3Al2O6 phosphors were produced through a gel combustion method using Urea + beta-Alanine, Urea, and Urea + Glycine as fuels. The crystal structure and the phase purity of the obtained materials were characterized by X-ray powder diffraction (XRD). Ca3Al2O6 :Sm3+ phosphor shows characteristic emission lines (565 nm, 602 nm, 649 nm, and 714 nm) in the orange red region assigned to (4)G(5/2) -> H- 6(J) (J = 5/2, 7/2, 9/2, 11/2) transitions of Sm3+. The strongest peak is located at 602 nm. Emission spectra of Ca3Al2O6 :Dy3+ show that there are two dominant peaks centered at 480 nm and 573 nm emitting blue and yellow light. Optimum doping concentrations of Sm(NO3)(3) and Dy(NO3)(3) are 0.01 % and 0.03 %, respectively. The concentration quenching mechanism is verified to be a dipole-dipole interaction as the type of energy transfer among Sm3+-Sm3+ and Dy3+-Dy3+ ions. The critical distance is also calculated to be 24.19 angstrom and 16.77 angstrom, respectively.Öğe Synthesis and enhanced photoluminescence of the BaSiF6:Dy3+ phosphors by Li+ doping via combustion method(Elsevier, 2022) Souadi, G. O.; Kaynar, Ümit H.; Ayvacıklı, M.; Canımoğlu, A.; Can, N.Undoped BaSiF6, Dy3+ doped BaSiF6, and Dy3+, Li+ co-doped BaSiF6 phosphors were synthesized through a gelcombustion method. The prepared samples were characterized by powder x-ray diffraction (XRD), Fourier transform infrared (FTIR), energy dispersive x-ray spectroscopy (EDS), and photoluminescence (PL) techniques. The XRD data revealed that both the Dy3+ doped and Li+ co-doped BaSiF6 phosphors exhibited a single-phase structure belonging to the space group R (3m) over bar which matched well with the standard JCPDS files (No. 002-6613). FTIR spectra showed absorption bands at 3417 cm -1 , 1640 cm(-1), and 1620 cm(-1) corresponding to water molecules. EDS analysis confirmed the chemical composition of the prepared samples. The PL emission spectra of BaSiF6:Dy3+ by different co-doping concentrations of Li+ exhibited prominent emission peaks at 490 nm, 572 nm, 672 nm and 758 nm. The incorporation of Li+ is beneficial for enhancing the photoluminescence intensity. The optimum Li+ amount was 8% for BaSiF6:Dy3+ and then started to decrease. The enhancement could be due to the occurrence of oxygen vacancies due to the incorporation of Li+ ions. The x = 0.301 and y = 0.361 coordinates of this phosphor with varying Li+ dopant concentration determined by the Commission Internationale de l'Eclairage (CIE - 1931) were in the white range. The present work demonstrates how a simple and effective method can be used to prepare novel nanophosphors for applications in the field of visible light emitting devices with enhanced white emission.Öğe Synthesis and photoluminescence characteristics of a novel Eu and Tb doped Li2MoO4 phosphor(Pergamon-Elsevier Science Ltd, 2021) Souadi, G. O.; Kaynar, Ümit H.; Ayvacıklı, M.; Çoban, M. B.; Oğlakçı, M.; Canımoğlu, A.; Can, N.Li2MoO4:x Eu3+ and Li2MoO4:xTb(3+) phosphors, where x = 0.5, 1, 2, 3, 5 and 7 wt%, were synthesized through a gel-combustion method. The XRD data reveals that Eu3+ and Tb3+ doped Li2MoO4 phosphors exhibit a Rhombohedral structure belonging to the space group R3 which matched well with the standard JCPDS files (No.0120763). We present photoluminescence (PL) spectra from Eu and Tb doped Li2MoO4 under 349 nm Nd:YLF pulses laser excitation over the temperature range of 10-300 K. Undoped Li2MoO4 shows a wide broad band around 600 nm because of the intrinsic PL emission of tetrahedral of MoO42- which was in good agreement with previous findings. Under the excitation of 394 nm, the as-synthesized phosphors exhibited sharp and strong intensity PL emission signals in the red (612 nm, D-5(0) -> F-7(2) transition) and green (544 nm, D-5(4) -> F-7(5) transition), respectively. The critical doping concentration of Eu3+ and Tb3+ ions in the Li2MoO4 were estimated to be 2 wt%. The concentration quenching phenomena were discussed, and the critical distances for energy transfer have also been evaluated by the concentration quenching.