Predicting firms' performances in customer complaint management using machine learning techniques

dc.authoridPeker, Serhat/0000-0002-6876-3982
dc.authorwosidPeker, Serhat/A-9677-2016
dc.contributor.authorPeker, Serhat
dc.date.accessioned2023-03-22T19:47:17Z
dc.date.available2023-03-22T19:47:17Z
dc.date.issued2022
dc.departmentBelirleneceken_US
dc.description4th International Conference on Intelligent and Fuzzy Systems (INFUS) -- JUL 19-21, 2022 -- Bornova, TURKEYen_US
dc.description.abstractWith the globalization and more intense increasing competition, customer relationship management (CRM) is an important issue in today's business. In this manner, managing customer complaints which is a critical part of CRM presents firms with an is an opportunity to make long-lasting and profitable relationships with customers. In this context, the aim of this paper is to predict firms' performances in online customer complaint management using machine learning algorithms. This study utilizes data obtained from Turkey's largest and well-known third-party online complaint platform and employs three popular machine learning classifiers including decision tree (DT), random forests (RF) and support vector machines (SVM). The results show that the RF algorithm performed better in firms' performance prediction compared to other ML algorithms.en_US
dc.identifier.doi10.1007/978-3-031-09176-6_33
dc.identifier.endpage287en_US
dc.identifier.isbn978-3-031-09176-6
dc.identifier.isbn978-3-031-09175-9
dc.identifier.issn2367-3370
dc.identifier.issn2367-3389
dc.identifier.scopus2-s2.0-85135084606en_US
dc.identifier.scopusqualityQ4en_US
dc.identifier.startpage280en_US
dc.identifier.urihttps://doi.org/10.1007/978-3-031-09176-6_33
dc.identifier.urihttps://hdl.handle.net/20.500.14034/586
dc.identifier.volume505en_US
dc.identifier.wosWOS:000889132600033en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherSpringer International Publishing Agen_US
dc.relation.journalIntelligent And Fuzzy Systems: Digital Acceleration And The New Normal, Infus 2022, Vol 2en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectData miningen_US
dc.subjectMachine learningen_US
dc.subjectBusiness intelligenceen_US
dc.subjectCRM analyticsen_US
dc.subjectData-driven CRMen_US
dc.subjectData Mining Techniquesen_US
dc.subjectHybrid Approachen_US
dc.subjectIndustryen_US
dc.subjectChurnen_US
dc.titlePredicting firms' performances in customer complaint management using machine learning techniquesen_US
dc.typeConference Objecten_US

Dosyalar