Multiple-classifiers in software quality engineering: Combining predictors to improve software fault prediction ability
dc.authorid | Borandag, Emin / 0000-0001-5553-2707 | |
dc.authorscopusid | 57063539900 | |
dc.authorscopusid | 25654077600 | |
dc.authorscopusid | 57063310500 | |
dc.authorscopusid | 56952927700 | |
dc.authorwosid | Borandag, Emin/L-1714-2019 | |
dc.contributor.author | Yücalar, Fatih | |
dc.contributor.author | Özçift, Akın | |
dc.contributor.author | Borandağ, Emin | |
dc.contributor.author | Kılınç, Deniz | |
dc.date.accessioned | 2022-02-15T16:59:03Z | |
dc.date.available | 2022-02-15T16:59:03Z | |
dc.date.issued | 2020 | |
dc.department | Bakırçay Üniversitesi | en_US |
dc.description.abstract | Software development projects require a critical and costly testing phase to investigate efficiency of the resultant product. As the size and complexity of project increases, manual prediction of software defects becomes a time consuming and costly task. An alternative to manual defect prediction is the use of automated predictors to focus on faulty modules and let the software engineer to examine the defective part with more detail. In this aspect, improved fault predictors will always find a software quality application project to be applied on. There are many base predictors tested-designed for this purpose. However, base predictors might be combined with an ensemble strategy to further improve to increase their performance, particularly fault-detection abilities. The aim of this study is to demonstrate fault-prediction performance of ten ensemble predictors compared to baseline predictors empirically. In our experiments, we used 15 software projects from PROMISE repository and we evaluated the fault-detection performance of algorithms in terms of F-measure (FM) and Area under the Receiver Operating Characteristics (ROC) Curve (AUC). The results of experiments demonstrated that ensemble predictors might improve fault detection performance to some extent. (C) 2019 Karabuk University. Publishing services by Elsevier B.V. | en_US |
dc.identifier.doi | 10.1016/j.jestch.2019.10.005 | |
dc.identifier.endpage | 950 | en_US |
dc.identifier.issn | 2215-0986 | |
dc.identifier.issue | 4 | en_US |
dc.identifier.scopus | 2-s2.0-85075425550 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.startpage | 938 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.jestch.2019.10.005 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14034/506 | |
dc.identifier.volume | 23 | en_US |
dc.identifier.wos | WOS:000558754000009 | en_US |
dc.identifier.wosquality | Q1 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier - Division Reed Elsevier India Pvt Ltd | en_US |
dc.relation.journal | Engineering Science And Technology-An International Journal-Jestech | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Classification | en_US |
dc.subject | Ensemble learning | en_US |
dc.subject | Software fault prediction | en_US |
dc.subject | Software quality engineering | en_US |
dc.subject | Static Code Attributes | en_US |
dc.subject | Defect Predictors | en_US |
dc.subject | Ensemble | en_US |
dc.title | Multiple-classifiers in software quality engineering: Combining predictors to improve software fault prediction ability | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- Multiple-classifiers in software quality engineering.pdf
- Boyut:
- 1.51 MB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text