An energy-efficient permutation flowshop scheduling problem
Tarih
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
Özet
The permutation flowshop scheduling problem (PFSP) has been extensively explored in scheduling literature because it has many real-world industrial implementations. In some studies, multiple objectives related to production efficiency have been considered simultaneously. However, studies that consider energy consumption and environmental impacts are very rare in a multi-objective setting. In this work, we studied two contradictory objectives, namely, total flowtime and total energy consumption (TEC) in a green permutation flowshop environment, in which the machines can be operated at varying speed levels corresponding to different energy consumption values. A bi-objective mixed-integer programming model formulation was developed for the problem using a speed-scaling framework. To address the conflicting objectives of minimizing TEC and total flowtime, the augmented epsilon-constraint approach was employed to obtain Pareto-optimal solutions. We obtained near approximations for the Pareto-optimal frontiers of small-scale problems using a very small epsilon level. Furthermore, the mathematical model was run with a time limit to find sets of non-dominated solutions for large instances. As the problem was NP-hard, two effective multi-objective iterated greedy algorithms and a multi-objective variable block insertion heuristic were also proposed for the problem as well as a novel construction heuristic for initial solution generation. The performance of the developed heuristic algorithms was assessed on well-known benchmark problems in terms of various quality measures. Initially, the performance of the algorithms was evaluated on small-scale instances using Pareto-optimal solutions. Then, it was shown that the developed algorithms are tremendously effective for solving large instances in comparison to time-limited model. (C) 2020 Elsevier Ltd. All rights reserved.