Novel Tb3+-Doped LaAl2 B4 O10 phosphors: Structural analysis, luminescent properties, and energy transfer mechanism

Küçük Resim Yok

Tarih

2024

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Pergamon-Elsevier Science Ltd

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

This study explores the structural and luminescent properties of terbium (Tb3+)-doped lanthanum aluminium borate (LaAl2B4O,0, abbreviated as LAB) phosphors, a novel host lattice for Tb3+ doping. LAB:Tb3+ phosphors, with varying dopant concentrations, were synthesized using a microwave-assisted combustion synthesis approach and characterized using X-ray diffraction (XRD), Rietveld refinement, and photoluminescence spectroscopy at both room and low temperatures. The structural analysis confirmed the hexagonal crystal structure of LAB and revealed successful incorporation of Tb3+ ions without altering the fundamental lattice. Luminescence studies demonstrated that the LAB:Tb3+ phosphors show strong green emission primarily attributed to the 5D4 -> 7F5 transition of Tb3+. The optimal doping concentration was determined to be 5 wt% Tb3+, which provided maximum luminescence efficiency. This concentration also allowed for a critical study of energy transfer mechanisms within the phosphor, revealing dipole-dipole interactions with a critical distance of 9.80 & Aring; between Tb3+ ions. Additionally, the CIE chromaticity coordinates of LAB:0.05 Tb3+ were precisely determined to be (0.289, 0.4460), indicating the potential for high-quality green emission suitable for solid-state lighting and display technologies. This work not only demonstrates the potential of LAB:Tb3+ as a highly efficient green luminescent material, but also sheds light on the mechanisms responsible for energy transfer and concentration quenching.

Açıklama

Anahtar Kelimeler

Rietveld analysis, Photoluminescence, Concentration quenching, CIE chromaticity

Künye