A novel chaotic manta-ray foraging optimization algorithm for thermo-economic design optimization of an air-fin cooler

dc.authoridTurgut, Oguz Emrah / 0000-0003-3556-8889
dc.authorscopusid57200158463
dc.contributor.authorTurgut, Oğuz Emrah
dc.date.accessioned2022-02-15T16:58:47Z
dc.date.available2022-02-15T16:58:47Z
dc.date.issued2021
dc.departmentBakırçay Üniversitesien_US
dc.description.abstractThis research study aims to introduce chaos theory into the Manta Ray Foraging Optimization (MRFO) Algorithm and optimize a real-world design problem through the chaos-enhanced versions of this method. Manta Ray Foraging Optimization algorithm is a bio-inspired swarm intelligence-based metaheuristic algorithm simulating the distinctive food search behaviors of the manta rays. However, MRFO suffers from some intrinsic algorithmic inefficiencies such as slow and premature convergence and unexpected entrapment to the local optimum points in the search domain like most of the metaheuristic algorithms in the literature. Recently, random numbers generated by chaos theory have been incorporated into the metaheuristic algorithms to solve these problems. More than twenty chaotic maps are applied to the base algorithm and ten best performing methods are considered for performance evaluation on high-dimensional optimization test problems. Forty test problems comprising unimodal and multimodal functions have been solved by chaotic variants of MRFO and extensive statistical analysis is performed. Furthermore, thermo-economic design optimization of an air-fin cooler is maintained by the chaotic MRFO variants to assess their optimization capabilities over complex engineering design problems. Ten decisive design variables of an air fin cooler are optimized in terms of total annual cost rates and optimum solutions obtained by five best chaotic MRFO algorithms are compared to the preliminary design. A significant improvement is observed in the objective function values when MRFO with chaotic operators is applied to this considered thermal design problem.en_US
dc.identifier.doi10.1007/s42452-020-04013-1
dc.identifier.issn2523-3963
dc.identifier.issn2523-3971
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85100738984en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.urihttps://doi.org/10.1007/s42452-020-04013-1
dc.identifier.urihttps://hdl.handle.net/20.500.14034/466
dc.identifier.volume3en_US
dc.identifier.wosWOS:000603579800002en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.institutionauthorTurgut, Oğuz Emrah
dc.language.isoenen_US
dc.publisherSpringer International Publishing Agen_US
dc.relation.journalSn Applied Sciencesen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAir-fin cooleren_US
dc.subjectChaos theoryen_US
dc.subjectGlobal optimizationen_US
dc.subjectManta-ray optimization algorithmen_US
dc.subjectThermal designen_US
dc.subjectGlobal Optimizationen_US
dc.subjectHeat-Transferen_US
dc.subjectMetaheuristic Algorithmen_US
dc.subjectDifferential Evolutionen_US
dc.subjectSearch Optimizationen_US
dc.subjectSystemen_US
dc.subjectMapen_US
dc.titleA novel chaotic manta-ray foraging optimization algorithm for thermo-economic design optimization of an air-fin cooleren_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
A novel chaotic manta-ray foraging optimization algorithm for thermo-economic design optimization of an air-fin cooler.pdf
Boyut:
5.26 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text