Detecting file types using machine learning algorithms
dc.authorscopusid | 57197834621 | |
dc.authorscopusid | 57215282178 | |
dc.authorscopusid | 57215278651 | |
dc.authorscopusid | 57197831977 | |
dc.authorscopusid | 56952927700 | |
dc.contributor.author | Konaray, Serdar Korhan | |
dc.contributor.author | Toprak, Aykut | |
dc.contributor.author | Pek, Gamze Mat | |
dc.contributor.author | Akçekoce, Hüseyin | |
dc.contributor.author | Kılınç, Deniz | |
dc.date.accessioned | 2022-02-15T16:58:03Z | |
dc.date.available | 2022-02-15T16:58:03Z | |
dc.date.issued | 2019 | |
dc.department | Bakırçay Üniversitesi | en_US |
dc.description | Innovations in Intelligent Systems and Applications Conference (ASYU) -- OCT 31-NOV 02, 2019 -- Izmir, TURKEY | en_US |
dc.description.abstract | In this study, experiments have been carried out to analyze the file content and classify the type of file using machine learning algorithms. First a new benchmark dataset was created including popular file types used as malicious software. Then the proposed system was trained using different machine learning algorithms. The accuracy and runtime performance comparison of models were evaluated. As a result, the highest accuracy rate was obtained as 97.83% by XGBoost algorithm. | en_US |
dc.description.sponsorship | Yasar Univ, IEEE Turkey Sect, Yildiz Teknik Univ, Idea, Siemens | en_US |
dc.description.sponsorship | Deytek Bilisim [7180104] | en_US |
dc.description.sponsorship | The application of the proposed study was supported and implemented by Deytek Bilisim within the scope of TUBITAK TEYDEB 1507 project (project number is 7180104 and the project name is Bilgi Geri Getirim Tabanli Kurumsal Akilli Dosya Indeksleme, Tarama Ve Filtreleme Sistemi) | en_US |
dc.identifier.endpage | 136 | en_US |
dc.identifier.isbn | 978-1-7281-2868-9 | |
dc.identifier.scopus | 2-s2.0-85078329939 | en_US |
dc.identifier.scopusquality | N/A | en_US |
dc.identifier.startpage | 133 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.14034/334 | |
dc.identifier.uri | https://doi.org/10.1109/ASYU48272.2019.8946393 | |
dc.identifier.wos | WOS:000631252400025 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE | en_US |
dc.relation.journal | 2019 Innovations In Intelligent Systems And Applications Conference (Asyu) | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Content based file type detection | en_US |
dc.subject | file type detection with machine learning | en_US |
dc.title | Detecting file types using machine learning algorithms | en_US |
dc.type | Conference Object | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
[ X ]
- İsim:
- Detecting file types using machine learning algorithms.pdf
- Boyut:
- 241.09 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text