A comparison of combat genetic and big bang-big crunch algorithms for solving the buffer allocation problem

Yükleniyor...
Küçük Resim

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

The buffer allocation problem (BAP) aims to determine the optimal buffer configuration for a production line under the predefined constraints. The BAP is an NP-hard combinatorial optimization problem and the solution space exponentially grows as the problem size increases. Therefore, problem specific heuristic or meta-heuristic search algorithms are widely used to solve the BAP. In this study two population-based search algorithms; i.e. Combat Genetic Algorithm (CGA) and Big Bang-Big Crunch (BB-BC) algorithm, are proposed in solving the BAP to maximize the throughput of the line under the total buffer size constraint for unreliable production lines. Performances of the proposed algorithms are tested on existing benchmark problems taken from the literature. The experimental results showed that the proposed BB-BC algorithm yielded better results than the proposed CGA as well as other algorithms reported in the literature.

Açıklama

Anahtar Kelimeler

Buffer allocation problem, Throughput maximization, Production lines, Combat genetic algorithm, Big bang-big crunch algorithm, Tabu Search Approach, Evolutionary Algorithm, Production Lines, Storage Space, Optimization, Systems, Machines, Design, Maintenance

Künye