Quaternions via generalized Fibonacci and Lucas number components

Yükleniyor...
Küçük Resim

Tarih

2019

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Editura Acad Romane

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In this paper, we derive some combinatorial properties of generalized Fibonacci quaternion Q(n) and generalized Lucas quaternion K-n, where the components of Q(n) and K-n are generalized Fibonacci number U-n and generalized Lucas number V-n, respectively. Firstly, we obtain some basic identities and use them to prove Catalan identity for Q(n) and K-n. Then we find some sum formulas Sigma(n)(i=0)Qmi+r, Sigma(n)(i=0)Kmi+r, Sigma(n)(i=0)((n)(i))p(i) q(n-i)Q(i) and Sigma(n)(i=0)((n)(i))p(i) q(n-i)K(i) in terms of Q(n) and K-n. Moreover, we derive the generating functions of these generalized quaternions.

Açıklama

Anahtar Kelimeler

generalized Fibonacci numbers, generalized Lucas numbers, generalized quaternions, generating functions

Künye