Boundary value problems for bi-polyanalytic functions on the upper half plane

dc.contributor.authorKaraca, Bahriye
dc.date.accessioned2025-03-20T09:51:04Z
dc.date.available2025-03-20T09:51:04Z
dc.date.issued2025
dc.departmentİzmir Bakırçay Üniversitesi
dc.description.abstractIn this study, explicit solutions for certain boundary value problems in the upper half-plane are obtained. Various types of boundary conditions are examined in detail, and their effects on the solutions are analyzed. The solution methodology relies on higher-order Cauchy-Pompeiu representations, which are used to address boundary value problems for bi-polyanalytic functions and inhomogeneous Cauchy-Riemann equations. In this context, the solutions obtained extend classical boundary value problems, including the Schwarz, Dirichlet and Neumann problems, providing a more general framework for analyzing these equations.
dc.identifier.doi10.1080/17476933.2025.2472397
dc.identifier.issn1747-6933
dc.identifier.issn1747-6941
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1080/17476933.2025.2472397
dc.identifier.urihttps://hdl.handle.net/20.500.14034/2387
dc.identifier.wosWOS:001440894200001
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.institutionauthorKaraca, Bahriye
dc.language.isoen
dc.publisherTaylor & Francis Ltd
dc.relation.ispartofComplex Variables and Elliptic Equations
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WOS_20250319
dc.subjectBi-polyanalytic functions
dc.subjectboundary value problems for bi-polyanalytic functions
dc.subjectSchwarz problem
dc.subjectNeumann problem
dc.titleBoundary value problems for bi-polyanalytic functions on the upper half plane
dc.typeArticle

Dosyalar