Boundary value problems for bi-polyanalytic functions on the upper half plane
dc.contributor.author | Karaca, Bahriye | |
dc.date.accessioned | 2025-03-20T09:51:04Z | |
dc.date.available | 2025-03-20T09:51:04Z | |
dc.date.issued | 2025 | |
dc.department | İzmir Bakırçay Üniversitesi | |
dc.description.abstract | In this study, explicit solutions for certain boundary value problems in the upper half-plane are obtained. Various types of boundary conditions are examined in detail, and their effects on the solutions are analyzed. The solution methodology relies on higher-order Cauchy-Pompeiu representations, which are used to address boundary value problems for bi-polyanalytic functions and inhomogeneous Cauchy-Riemann equations. In this context, the solutions obtained extend classical boundary value problems, including the Schwarz, Dirichlet and Neumann problems, providing a more general framework for analyzing these equations. | |
dc.identifier.doi | 10.1080/17476933.2025.2472397 | |
dc.identifier.issn | 1747-6933 | |
dc.identifier.issn | 1747-6941 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.uri | https://doi.org/10.1080/17476933.2025.2472397 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14034/2387 | |
dc.identifier.wos | WOS:001440894200001 | |
dc.identifier.wosquality | Q3 | |
dc.indekslendigikaynak | Web of Science | |
dc.institutionauthor | Karaca, Bahriye | |
dc.language.iso | en | |
dc.publisher | Taylor & Francis Ltd | |
dc.relation.ispartof | Complex Variables and Elliptic Equations | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.snmz | KA_WOS_20250319 | |
dc.subject | Bi-polyanalytic functions | |
dc.subject | boundary value problems for bi-polyanalytic functions | |
dc.subject | Schwarz problem | |
dc.subject | Neumann problem | |
dc.title | Boundary value problems for bi-polyanalytic functions on the upper half plane | |
dc.type | Article |