Gadolinyum ve borat tabanlı katkılı kompozit yapıların hazırlanması ve soğurucu özelliklerinin incelenmesi
Küçük Resim Yok
Tarih
2024
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
İzmir Bakırçay Üniversitesi Lisansüstü Eğitim Enstitüsü
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Nükleer teknoloji uygulamaların da önemli problemlerden biri olan radyasyondan korunmanın en etkin yolu, radyasyona uygun zırhlama materyallerinin kullanılmasıdır. Radyasyondan daha etkili korunmak amacıyla, mevcut zırhlama materyallerine alternatif olabilecek yeni materyaller üzerinde yapılan araştırmalar son dönemde artış göstermiştir. Bu çalışmada, beta ve gama radyasyonunun engellenmesi ve soğurulması sürecinde oluşabilecek gama ışınlarının soğrulmasının gerekli olduğu nükleer ortamlarda kullanılabilecek, fiber yapıdaki ana matris yapıda (PVDF) içerisine gömülü farklı elementler ile katkılanmış nano GAB yapısı incelenmiştir. Bu yapı içerisinden en yüksek verimi sağlayan katkı elementlerinin ana yapı içerisinde konumlanması ile oluşan yeni özgün nano yapının elektrospin tekniği yardımı ile en yüksek soğurma kapasitesine sahip fiber kumaş yapısı eldesi hedeflenmiştir. İlk olarak, GAB sentezi sol-gel tutuşma yöntemi ile gerçekleştirilmiş ve elementler aynı yöntemle katkılanmıştır. Üretilen özgün nano partiküllerin yapısal oluşumları XRD analizleri ile kontrol edilmiştir. Sentezlenen yapılar ve fiber dökümü görüntüleri SEM teknikleri kullanılarak incelenmiştir. Farklı yapılarda ve oranlarda üretilen nano kompozit fiberlerin beta ve gama radyasyonu soğurma özelliklerinin yanı sıra kütle soğurma katsayısı (µ/r, cm²g⁻¹) hesaplanmıştır. Ana host yapı GAB içerisine Bi, Ba, Pb ve Zr gibi katkı elementleri ile bunların yüzde miktarı ve fiber içerisindeki oranına bağlı olarak kompozitlerin beta ve gama soğurma katsayıları değişiklik göstermektedir. Çalışmanın sonucunda, beta ve gama radyasyonunu en iyi soğuran fiber kompozitlerin GAB-Bi (PVDF) olduğu belirlenmiştir. Ana host yapı olan GAB içerisine katkılanan (Bi) elementi ile dökülen kumaşların farklı katmanlı kumaşlarda bile birbirine yakın soğurma katsayıları gözlenmiştir. Çalışmada beta soğurma deneylerinde; katkısız GAB (PVDF) fiber kompozit için soğurma katsayısı 1,45 cm-1 bulunurken en yüksek soğurma katsayısı olan Bi katkılı GAB için 3,61 cm-1, Gama soğurma deneylerinde ise katkısız GAB (PVDF) fiber kompozit için soğurma katsayısı 2,86 cm-1 bulunurken en yüksek soğurma katsayısı olan Bi katkılı GAB için 14,15 cm-1 olarak bulunmuştur. Elde edilen bu yapıların sağlık ve güvenlik alanları başta olmak üzere bir çok sektöre fayda sağlayacağın inanmaktayız. Bu çalışma, radyasyonu soğuran malzemelerin geliştirilmesinde nanoteknolojinin potansiyelini ortaya koymakta ve elektrospin teknolojisinin bu alandaki uygulamalarına önemli bir katkı sağlamaktadır.
One of the major problems in the application of nuclear technology is the protection from radiation. The most effective way to achieve this is through the use of shielding materials suitable for radiation. Recently, there has been an increase in research on new materials that could serve as alternatives to existing shielding materials for more effective radiation protection. In this study, a nano GAB structure, embedded with different elements into the main matrix structure (PVDF) in fiber form, was examined for its potential use in nuclear environments where the absorption of gamma rays generated during the process of blocking and absorbing beta and gamma radiation is necessary. The goal was to obtain a fiber fabric structure with the highest absorption capacity using the electrospinning technique by positioning the most efficient additive elements within the main structure. First, GAB synthesis was carried out using the sol-gel combustion method, and the elements were added using the same method. The structural formations of the produced unique nanoparticles were controlled using XRD analyses. The synthesized structures and fiber casting images were examined using SEM techniques. The beta and gamma radiation absorption properties and the mass absorption coefficient (µ/r, cm²g⁻¹) of the nano-composite fibers produced in different structures and ratios were calculated. The beta and gamma absorption coefficients of the composites vary depending on the percentage amount and the ratio of the elements such as Bi, Ba, Pb, and Zr added to the GAB main host structure. As a result of the study, it was determined that the fiber composites that best absorb beta and gamma radiation were GAB-Bi (PVDF). Similar absorption coefficients were observed in the fabrics cast with the (Bi) element added to the GAB main host structure, even in different layered fabrics. In the beta absorption experiments of the study; while the absorption coefficient for the non-doped GAB (PVDF) fiber composite was found to be 1.45 cm⁻¹, the highest absorption coefficient was 3.61 cm⁻¹ for the Bi-doped GAB. In the gamma absorption experiments, the absorption coefficient for the non-doped GAB (PVDF) fiber composite was found to be 2.86 cm⁻¹, while the highest absorption coefficient was 14.15 cm⁻¹ for the Bi-doped GAB. We believe that these obtained structures will benefit many sectors, especially in the fields of health and safety. This study highlights the potential of nanotechnology in the development of radiation-absorbing materials and makes a significant contribution to the applications of electrospinning technology in this field.
One of the major problems in the application of nuclear technology is the protection from radiation. The most effective way to achieve this is through the use of shielding materials suitable for radiation. Recently, there has been an increase in research on new materials that could serve as alternatives to existing shielding materials for more effective radiation protection. In this study, a nano GAB structure, embedded with different elements into the main matrix structure (PVDF) in fiber form, was examined for its potential use in nuclear environments where the absorption of gamma rays generated during the process of blocking and absorbing beta and gamma radiation is necessary. The goal was to obtain a fiber fabric structure with the highest absorption capacity using the electrospinning technique by positioning the most efficient additive elements within the main structure. First, GAB synthesis was carried out using the sol-gel combustion method, and the elements were added using the same method. The structural formations of the produced unique nanoparticles were controlled using XRD analyses. The synthesized structures and fiber casting images were examined using SEM techniques. The beta and gamma radiation absorption properties and the mass absorption coefficient (µ/r, cm²g⁻¹) of the nano-composite fibers produced in different structures and ratios were calculated. The beta and gamma absorption coefficients of the composites vary depending on the percentage amount and the ratio of the elements such as Bi, Ba, Pb, and Zr added to the GAB main host structure. As a result of the study, it was determined that the fiber composites that best absorb beta and gamma radiation were GAB-Bi (PVDF). Similar absorption coefficients were observed in the fabrics cast with the (Bi) element added to the GAB main host structure, even in different layered fabrics. In the beta absorption experiments of the study; while the absorption coefficient for the non-doped GAB (PVDF) fiber composite was found to be 1.45 cm⁻¹, the highest absorption coefficient was 3.61 cm⁻¹ for the Bi-doped GAB. In the gamma absorption experiments, the absorption coefficient for the non-doped GAB (PVDF) fiber composite was found to be 2.86 cm⁻¹, while the highest absorption coefficient was 14.15 cm⁻¹ for the Bi-doped GAB. We believe that these obtained structures will benefit many sectors, especially in the fields of health and safety. This study highlights the potential of nanotechnology in the development of radiation-absorbing materials and makes a significant contribution to the applications of electrospinning technology in this field.
Açıklama
Anahtar Kelimeler
Bilim ve Teknoloji, Science and Technology