Predicting achievement in distance language learning: a structural equation model

dc.authoridKizil, Aysel Sahin / 0000-0001-6277-6208
dc.authorscopusid36105580400
dc.authorwosidKizil, Aysel Sahin/B-7700-2016
dc.contributor.authorKızıl, Ayşel Şahin
dc.date.accessioned2022-02-15T16:58:01Z
dc.date.available2022-02-15T16:58:01Z
dc.date.issued2021
dc.departmentBakırçay Üniversitesien_US
dc.description.abstractGetting increasingly common in many settings in higher education, distance language courses have become a vigorous area of research which requires sustained focus. Although the relevant literature has documented well various aspects of distance language learning, the factors affecting academic achievement have remained underresearched. This study investigates the predictive power of the sense of community, perceived learning and learner satisfaction as the possible factors having an influence on academic achievement. Data for this study come from a series of surveys administered to a total of 156 EFL learners and participants' final grades. Structural Equation Model (SEM) was used to analyse the data. Results indicated acceptable values of the goodness of fit indices for structural model (TLI =.96; CFI =.98; NFI =.95; RMSEA =.06 and SRMR =.04). Analysis of path coefficients revealed that two components of sense of community (i.e. teaching presence and cognitive presence), perceived learning and satisfaction are the significant predictors of academic achievement. The research findings bear implications for the design of distance language courses.en_US
dc.identifier.doi10.1080/02680513.2020.1787819
dc.identifier.endpage104en_US
dc.identifier.issn0268-0513
dc.identifier.issn1469-9958
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85087645067en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.startpage88en_US
dc.identifier.urihttps://doi.org/10.1080/02680513.2020.1787819
dc.identifier.urihttps://hdl.handle.net/20.500.14034/327
dc.identifier.volume36en_US
dc.identifier.wosWOS:000624459400006en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.institutionauthorKızıl, Ayşel Şahin
dc.language.isoenen_US
dc.publisherRoutledge Journals, Taylor & Francis Ltden_US
dc.relation.journalOpen Learningen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAcademic achievementen_US
dc.subjectdistance language learningen_US
dc.subjectEFL learnersen_US
dc.subjectstructural equation modelen_US
dc.subjectSocial Presenceen_US
dc.subjectOnlineen_US
dc.subjectCommunityen_US
dc.subjectSatisfactionen_US
dc.subjectTechnologyen_US
dc.subjectStudentsen_US
dc.subjectInquiryen_US
dc.subjectSenseen_US
dc.titlePredicting achievement in distance language learning: a structural equation modelen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
Predicting achievement in distance language learning- structural equation model.pdf
Boyut:
3.11 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text