Yazar "Kandiller, Levent" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe An energy-efficient permutation flowshop scheduling problem(Pergamon-Elsevier Science Ltd, 2020) Öztop, Hande; Taşgetiren, M. Fatih; Eliiyi, Deniz Türsel; Pan, Quan-Ke; Kandiller, LeventThe permutation flowshop scheduling problem (PFSP) has been extensively explored in scheduling literature because it has many real-world industrial implementations. In some studies, multiple objectives related to production efficiency have been considered simultaneously. However, studies that consider energy consumption and environmental impacts are very rare in a multi-objective setting. In this work, we studied two contradictory objectives, namely, total flowtime and total energy consumption (TEC) in a green permutation flowshop environment, in which the machines can be operated at varying speed levels corresponding to different energy consumption values. A bi-objective mixed-integer programming model formulation was developed for the problem using a speed-scaling framework. To address the conflicting objectives of minimizing TEC and total flowtime, the augmented epsilon-constraint approach was employed to obtain Pareto-optimal solutions. We obtained near approximations for the Pareto-optimal frontiers of small-scale problems using a very small epsilon level. Furthermore, the mathematical model was run with a time limit to find sets of non-dominated solutions for large instances. As the problem was NP-hard, two effective multi-objective iterated greedy algorithms and a multi-objective variable block insertion heuristic were also proposed for the problem as well as a novel construction heuristic for initial solution generation. The performance of the developed heuristic algorithms was assessed on well-known benchmark problems in terms of various quality measures. Initially, the performance of the algorithms was evaluated on small-scale instances using Pareto-optimal solutions. Then, it was shown that the developed algorithms are tremendously effective for solving large instances in comparison to time-limited model. (C) 2020 Elsevier Ltd. All rights reserved.Öğe Ensemble of metaheuristics for energy-efficient hybrid flowshops: Makespan versus total energy consumption(Elsevier, 2020) Öztop, Hande; Taşgetiren, M. Fatih; Kandiller, Levent; Eliiyi, Deniz Türsel; Gao, LiangDue to its practical relevance, the hybrid flowshop scheduling problem (HFSP) has been widely studied in the literature with the objectives related to production efficiency. However, studies regarding energy consumption and environmental effects have rather been limited. This paper addresses the trade-off between makespan and total energy consumption in hybrid flowshops, where machines can operate a varying speed levels. A bi-objective mixed-integer linear programming (MILP) model and a bi-objective constraint programming (CP) model are proposed for the problem employing speed scaling. Since the objectives of minimizing makespan and total energy consumption are conflicting with each other, the augmented epsilon (epsilon)-constraint approach is used for obtaining the Pareto-optimal solutions. While close approximations for the Pareto-optimal frontier are obtained for small-sized instances, sets of non-dominated solutions are obtained for large instances by solving the MILP and CP models under a time limit. As the problem is NP-hard, two variants of the iterated greedy algorithm, a variable block insertion heuristic and four variants of ensemble of metaheuristic algorithms are also proposed, as well as a novel constructive heuristic. The performances of the proposed seven bi-objective metaheuristics are compared with each other as well as the MILP and CP solutions on a set of well-known HFSP benchmarks in terms of cardinality, closeness, and diversity of the solutions. Initially, the performances of the algorithms are tested on small-sized instances with respect to the Pareto-optimal solutions. Then, it is shown that the proposed algorithms are very effective for solving large instances in terms of both solution quality and CPU time.Öğe Vehicle routing with compartments under product incompatibility constraints(Svenciliste U Zagrebu, Fakultet Prometnih Znanosti, 2019) Taşar, Bahar; Eliiyi, Deniz Türsel; Kandiller, LeventThis study focuses on a distribution problem involving incompatible products which cannot be stored in a compartment of a vehicle. To satisfy different types of customer demand at minimum logistics cost, the products are stored in different compartments of fleet vehicles, which requires the problem to be modeled as a multiple-compartment vehicle routing problem (MCVRP). While there is an extensive literature on the vehicle routing problem (VRP) and its numerous variants, there are fewer research papers on the MCVRP. Firstly, a novel taxonomic framework for the VRP literature is proposed in this study. Secondly, new mathematical models are proposed for the basic MCVRP, together with its multiple-trip and split-delivery extensions, for obtaining exact solutions for small-size instances. Finally, heuristic algorithms are developed for larger instances of the three problem variants. To test the performance of our heuristics against optimum solutions for larger instances, a lower bounding scheme is also proposed. The results of the computational experiments are reported, indicating validity and a promising performance of an approach.