Yazar "Dalveren, Yaser" seçeneğine göre listele
Listeleniyor 1 - 9 / 9
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A Simplified Method Based on RSSI Fingerprinting for IoT Device Localization in Smart Cities(Ieee-Inst Electrical Electronics Engineers Inc, 2024) Dogan, Deren; Dalveren, Yaser; Kara, Ali; Derawi, MohammadThe Internet of Things (IoT) has significantly improved location-based services in smart cities, such as automated public transportation and traffic management. Estimating the location of connected devices is a critical problem. Low Power Wide Area Network (LPWAN) technologies are used for localization due to their low power consumption and long communication range. Recent advances in Machine Learning have made Received Signal Strength Indicator (RSSI) fingerprinting with LPWAN technologies effective. However, this requires a connection between devices and gateways or base stations, which can increase network deployment, maintenance, and installation costs. This study proposes a cost-effective RSSI fingerprinting solution using IQRF technology for IoT device localization. The region of interest is divided into grids to provide training locations, and measurements are conducted to create a training dataset containing RSSI fingerprints. Pattern matching is performed to localize the device by comparing the fingerprint of the end device with the fingerprints in the created database. To evaluate the efficiency of the proposed solution, measurements were conducted in a short-range local area ( $80\times 30$ m) at 868 MHz. In the measurements, four IQRF nodes were utilized to receive the RSSIs from a transmitting IQRF node. The performances of well-known ML classifiers on the created dataset are then comparatively assessed in terms of test accuracy, prediction speed, and training time. According to the results, the Bagged Trees classifier demonstrated the highest accuracy with 96.87%. However, with an accuracy of 95.69%, the Weighted k-NN could also be a reasonable option for real-world implementations due to its faster prediction speed (37615 obs/s) and lower training time (28.1 s). To the best of the authors' knowledge, this is the first attempt to explore the feasibility of the IQRF networks to develop a RSSI fingerprinting-based IoT device localization in the literature. The promising results suggest that the proposed method could be used as a low-cost alternative for IoT device localization in short-range location-based smart city applications.Öğe Achieving Millimeter-Level Accuracy for Weight on Wheels (WoW) in Unmanned Aerial Systems (UAS)(Institute of Electrical and Electronics Engineers Inc., 2024) Awan, Maaz Ali; Dalveren, Yaser; Kara, AliWeight on Wheels (WoW) systems are pivotal in aircraft landing, ensuring timely control actions and safety measures. Accurate touchdown estimation is critical, demanding fail-safe mechanisms with multiple redundancies. For unmanned aerial systems (UAS), where size, weight, and power (SWaP) metrics are paramount, software redundancies offer a viable solution with minimal SWaP overhead. FrequencyModulated Continuous Wave (FMCW) Radar Altimeters are crucial for UAS landing approaches. Leveraging software-defined architectures and prioritizing WoW safety requirements, radar waveform specifications can be tailored for precise touchdown detection in UAS, aligning with software redundancy principles. While Zoom FFT (ZFFT) traditionally conserves resources by focusing on specific spectrum portions, this study proposes an alternative approach for millimeter-level range accuracy on mmWave FMCW automotive radar. It includes derivation of waveform specifications from operational requirements, methodological insights, theoretical discourse, and experimental hardware results. The article concludes with authors' discussion and future research directions. © 2024 IEEE.Öğe Advancing mmWave Altimetry for Unmanned Aerial Systems: A Signal Processing Framework for Optimized Waveform Design(MDPI, 2024) Awan, Maaz Ali; Dalveren, Yaser; Kara, Ali; Derawi, MohammadThis research advances millimeter-wave (mmWave) altimetry for unmanned aerial systems (UASs) by optimizing performance metrics within the constraints of inexpensive automotive radars. Leveraging the software-defined architecture, this study encompasses the intricacies of frequency modulated continuous waveform (FMCW) design for three distinct stages of UAS flight: cruise, landing approach, and touchdown within a signal processing framework. Angle of arrival (AoA) estimation, traditionally employed in terrain mapping applications, is largely unexplored for UAS radar altimeters (RAs). Time-division multiplexing multiple input-multiple output (TDM-MIMO) is an efficient method for enhancing angular resolution without compromising the size, weight, and power (SWaP) characteristics. Accordingly, this work argues the potential of AoA estimation using TDM-MIMO to augment situational awareness in challenging landing scenarios. To this end, two corner cases comprising landing a small-sized drone on a platform in the middle of a water body are included. Likewise, for the touchdown stage, an improvised rendition of zoom fast Fourier transform (ZFFT) is investigated to achieve millimeter (mm)-level range accuracy. Aptly, it is proposed that a mm-level accurate RA may be exploited as a software redundancy for the critical weight-on-wheels (WoW) system in fixed-wing commercial UASs. Each stage is simulated as a radar scenario using the specifications of automotive radar operating in the 77-81 GHz band to optimize waveform design, setting the stage for field verification. This article addresses challenges arising from radial velocity due to UAS descent rates and terrain variation through theoretical and mathematical approaches for characterization and mandatory compensation. While constant false alarm rate (CFAR) algorithms have been reported for ground detection, a comparison of their variants within the scope UAS altimetry is limited. This study appraises popular CFAR variants to achieve optimized ground detection performance. The authors advocate for dedicated minimum operational performance standards (MOPS) for UAS RAs. Lastly, this body of work identifies potential challenges, proposes solutions, and outlines future research directions.Öğe Flexible and Lightweight Mitigation Framework for Distributed Denial-of-Service Attacks in Container-Based Edge Networks Using Kubernetes(Ieee-Inst Electrical Electronics Engineers Inc, 2024) Koksal, Sarp; Catak, Ferhat Ozgur; Dalveren, YaserMobile Edge Computing (MEC) has a significant potential to become more prevalent in Fifth Generation (5G) networks, requiring resource management that is lightweight, agile, and dynamic. Container-based virtualization platforms, such as Kubernetes, have emerged as key enablers for MEC environments. However, network security and data privacy remain significant concerns, particularly due to Distributed Denial-of-Service (DDoS) attacks that threaten the massive connectivity of end-devices. This study proposes a defense mechanism to mitigate DDoS attacks in container-based MEC networks using Kubernetes. The mechanism dynamically scales Containerized Network Functions (CNFs) with auto-scaling through an Intrusion Detection and Prevention System (IDPS). The architecture of the proposed mechanism leverages distributed edge clusters and Kubernetes to manage resources and balance the load of IDPS CNFs. Experiments conducted in a real MEC environment using OpenShift and Telco-grade MEC profiles demonstrate the effectiveness of the proposed mechanism against Domain Name System (DNS) flood and Yo-Yo attacks. Results also verify that Kubernetes efficiently meets the lightweight, agile, and dynamic resource management requirements of MEC networks.Öğe Radar Emitter Localization Based on Multipath Exploitation Using Machine Learning(Ieee-Inst Electrical Electronics Engineers Inc, 2024) Catak, Ferhat Ozgur; Al Imran, Md Abdullah; Dalveren, Yaser; Yildiz, Beytullah; Kara, AliIn this study, a Machine Learning (ML)-based approach is proposed to enhance the computational efficiency of a particular method that was previously proposed by the authors for passive localization of radar emitters based on multipath exploitation with a single receiver in Electronic Support Measures (ESM) systems. The idea is to utilize a ML model on a dataset consisting of useful features obtained from the priori-known operational environment. To verify the applicability and computational efficiency of the proposed approach, simulations are performed on the pseudo-realistic scenes to create the datasets. Well-known regression ML models are trained and tested on the created datasets. The performance of the proposed approach is then evaluated in terms of localization accuracy and computational speed. Based on the results, it is verified that the proposed approach is computationally efficient and implementable in radar detection applications on the condition that the operational environment is known prior to implementation.Öğe Real-Time Radar Classification Based on Software-Defined Radio Platforms: Enhancing Processing Speed and Accuracy with Graphics Processing Unit Acceleration(MDPI, 2024) Oncu, Seckin; Karakaya, Mehmet; Dalveren, Yaser; Kara, Ali; Derawi, MohammadThis paper presents a comprehensive evaluation of real-time radar classification using software-defined radio (SDR) platforms. The transition from analog to digital technologies, facilitated by SDR, has revolutionized radio systems, offering unprecedented flexibility and reconfigurability through software-based operations. This advancement complements the role of radar signal parameters, encapsulated in the pulse description words (PDWs), which play a pivotal role in electronic support measure (ESM) systems, enabling the detection and classification of threat radars. This study proposes an SDR-based radar classification system that achieves real-time operation with enhanced processing speed. Employing the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm as a robust classifier, the system harnesses Graphical Processing Unit (GPU) parallelization for efficient radio frequency (RF) parameter extraction. The experimental results highlight the efficiency of this approach, demonstrating a notable improvement in processing speed while operating at a sampling rate of up to 200 MSps and achieving an accuracy of 89.7% for real-time radar classification.Öğe Securing the Internet of Things: Challenges and Complementary Overview of Machine Learning-Based Intrusion Detection(Institute of Electrical and Electronics Engineers Inc., 2024) Isin, Latife Ilayda; Dalveren, Yaser; Leka, Elva; Kara, AliThe significant increase in the number of IoT devices has also brought with it various security concerns. The ability of these devices to collect a lot of data, including personal information, is one of the important reasons for these concerns. The integration of machine learning into systems that can detect security vulnerabilities has been presented as an effective solution in the face of these concerns. In this review, it is aimed to examine the machine learning algorithms used in the current studies in the literature for IoT network security. Based on the authors' previous research in physical layer security, this research also aims to investigate the intersecting lines between upper layers of security and physical layer security. To achieve this, the current state of the area is presented. Then, relevant studies are examined to identify the key challenges and research directions as an initial overview within the authors' ongoing project. © 2024 IEEE.Öğe Serverless federated learning: Decentralized spectrum sensing in heterogeneous networks(Elsevier, 2025) Catak, Ferhat Ozgur; Kuzlu, Murat; Dalveren, Yaser; Ozdemir, GokcenFederated learning (FL) has gained more popularity due to the increasing demand for robust and efficient mechanisms to ensure data privacy and security during collaborative model training in the concept of artificial intelligence/machine learning (AI/ML). This study proposes an advanced version of FL without the central server, called a serverless or decentralized federated learning framework, to address the challenge of cooperative spectrum sensing in non-independent and identically distributed (non-IID) environments. The framework leverages local model aggregation at neighboring nodes to improve robustness, privacy, and generalizability. The system incorporates weighted aggregation based on distributional similarity between local datasets using Wasserstein distance. The results demonstrate that the proposed serverless federated learning framework offers a satisfactory performance in terms of accuracy and resilience.Öğe The Fast and Reliable Detection of Multiple Narrowband FH Signals: A Practical Framework(MDPI, 2024) Aydin, Mutlu; Dalveren, Yaser; Kara, Ali; Derawi, MohammadFrequency hopping (FH) is a well-known technique that is commonly used in communication systems owing to its many advantages, including its strong anti-jamming capability. In this technique, basically, radio signals are transmitted by switching the carrier between different frequency channels. As a result, the FH signal is not stationary; hence, its spectrum is expected to change over time. Therefore, the task of detection and parameter estimation of FH signals is very challenging in practice. To address this challenge, the study presented in this article proposes a method that detects and estimates the parameters of multiple narrowband FH signals. In the proposed method, first, short-time Fourier transform (STFT) is utilized to analyze FH signals, and a practical binarization process based on thresholding is used to detect FH signals. Then, a new algorithm is proposed to ensure that the center frequencies of the detected signals are successfully separated. Next, another algorithm is proposed to estimate the parameters of the detected signals. After estimating the parameters for the entire spectrum, an approach is used to detect FH signals. Lastly, the hop-clustering process is applied to separate the hops into groups without time overlap. The simulation results show that the proposed method can be an efficient way for the fast and accurate parameter estimation and detection of multiple narrowband FH signals.