Bitim, Bahar Demirtürk2022-02-152022-02-1520190031-53031588-2829https://doi.org/10.1007/s10998-019-00287-0https://hdl.handle.net/20.500.14034/155In this paper we find (n, m, a) solutions of the Diophantine equation L-n - L-m = 2 . 3(a), where L-n and L-m are Lucas numbers with a >= 0 and n > m >= 0. For proving our theorem, we use lower bounds for linear forms in logarithms and Baker-Davenport reduction method in Diophantine approximation.eninfo:eu-repo/semantics/closedAccessDiophantine equationLower boundsLogarithmic methodFibonacciNumbersFormOn the Diophantine equation L-n - L-m=2 . 3(a)Article10.1007/s10998-019-00287-0792210217Q3WOS:0004921573000072-s2.0-85068235124Q2