Madkhali, O.Kaynar, Umit H.Alajlani, Y.Coban, M. B.Guinea, J. GarciaAyvacikli, M.Pierson, J. F.2024-03-092024-03-0920230272-88421873-3956https://doi.org/10.1016/j.ceramint.2023.03.120https://hdl.handle.net/20.500.14034/1289GdAl3(BO3)4:Dy3+, Sm3+, Eu3+, and Tb3+ samples were successfully achieved via a sol-gel combustion method. The observed XRD analysis confirms the formation of the desired GAB host, indicating rhombohedral structures that agree well with JPCD card number 72-1985. The FTIR analyses show the detection of B -O stretching and B -O -B bending modes as well as Al -O and Gd -O bonds in the phosphor samples. Energy dispersive spectroscopy (EDS) analysis reveals that Sm, Eu, Dy, and Tb have been successfully doped into GdAl3(BO3)4. The observed broad intrinsic luminescence band can be caused by oxygen-induced luminescence defects in the GAB host with hydrous precursors. The luminescence properties of rare earth ion-doped GdAl3(BO3)4 samples are analysed by photoluminescence spectra, showing their optimal doping concentrations and critical distances of Dy3+, Eu3+, Sm3+ and Tb3+ are 2 wt% -25.8 angstrom, 7 wt% -17 angstrom, 1 wt% -32.59 angstrom, and 7 wt% -17.03 angstrom. Additionally, the energy transfer mechanism for luminescence quenching was determined as dipole-dipole (for Dy3+, Eu3+, and Tb3+) or dipole-quadrupole (for Sm3+) and the cross-relaxation process. GdAl3(BO3)4 samples obtained by doping with different RE3+ ions exhibit intense light emissions with different colors originating from different RE3+ ions under 349 nm excitation. When doped with different concentrations of RE3+ ions, the luminescence properties of the samples changed. The synthesized luminescence materials have potential ap-plications in lighting and display technologies.eninfo:eu-repo/semantics/closedAccessGdal3(Bo3)4; Rare Earths; Sol-Gel Combustion; Luminescence Defects; Concentration Quenching; Low-High Temperature Photoluminescence; Cross Relaxation MechanismStructural and temperature dependence luminescence characteristics of RE (RE=Eu3+, Dy3+, Sm3+and Tb3+) in the new gadolinium aluminate borate phosphorArticle10.1016/j.ceramint.2023.03.12049121998219995N/AWOS:0009942179000012-s2.0-85150232063Q1