Ataman, Mustafa GökalpSarıyer, Görkem2022-02-152022-02-1520210735-67571532-8171https://doi.org/10.1016/j.ajem.2021.02.061https://hdl.handle.net/20.500.14034/111Background: Since providing timely care is the primary concern of emergency departments (EDs), long waiting times increase patient dissatisfaction and adverse outcomes. Especially in overcrowded ED environments, emergency care quality can be significantly improved by developing predictive models of patients' waiting and treatment times to use in ED operations planning. Methods: Retrospective data on 37,711 patients arriving at the ED of a large urban hospital were examined. Ordinal logistic regression models were proposed to identify factors causing increased waiting and treatment times and classify patients with longer waiting and treatment times. Results: According to the proposed ordinal logistic regression model for waiting time prediction, age, arrival mode, and ICD-10 encoded diagnoses are all significant predictors. The model had 52.247% accuracy. The model for treatment time showed that in addition to age, arrival mode, and diagnosis, triage level was also a significant predictor. The model had 66.365% accuracy. The model coefficients had negative signs in the corresponding models, indicating that waiting times are negatively related to treatment times. Conclusion: By predicting patients' waiting and treatment times, ED workloads can be assessed instantly. This enables ED personnel to be scheduled to better manage demand supply deficiencies, increase patient satisfaction by informing patients and relatives about expected waiting times, and evaluate performances to improve ED operations and emergency care quality. (c) 2021 Elsevier Inc. All rights reserved.eninfo:eu-repo/semantics/closedAccessEmergency departmentWaiting timeTreatment timeICD-10TriageHospital AdmissionsLengthVariablesPredicting waiting and treatment times in emergency departments using ordinal logistic regression modelsArticle10.1016/j.ajem.2021.02.061464550Q1WOS:0006813072000092-s2.0-8510228863033721589Q1