HSV color histogram based ımage retrieval with background elimination

dc.authorscopusid57214818072
dc.authorscopusid57214823291
dc.authorscopusid55665216700
dc.authorscopusid6505999525
dc.authorscopusid6602869320
dc.contributor.authorErkut, U.
dc.contributor.authorBostancıoğlu, F.
dc.contributor.authorErten, Yusuf Murat
dc.contributor.authorÖzbayoğlu, A.M.
dc.contributor.authorSolak, E.
dc.date.accessioned2022-02-15T16:57:40Z
dc.date.available2022-02-15T16:57:40Z
dc.date.issued2019
dc.departmentBakırçay Üniversitesien_US
dc.description1st International Informatics and Software Engineering Conference, IISEC 2019 -- 6 November 2019 through 7 November 2019 -- -- 157111en_US
dc.description.abstractIn this study, a new content based image retrieval (CBIR) method, which uses HSV histogram data is proposed. The model uses the HSV histogram to find the background from the image by analyzing the peaks in the histogram data and performing a moving window algorithm to identify the region within the histogram that belongs to the background colors. After identifying the background information, the sections of the image that are part of the background are removed from the original image and the remaining foreground or content information is stored for comparison with other images. In order to verify the methodology, a graphical user interface is developed and 1000 different images from 10 different groups from the coral database are put into the image database for comparison. The analysis and preliminary tests show that comparing only the foreground information of the images pro-vided better results than comparing images themselves, especially when searching for particular objects within the images. This algorithm can also be used as a background elimination technique to reduce the storage requirements of images and the comparison time between images can be reduced significantly. © 2019 IEEE.en_US
dc.identifier.doi10.1109/UBMYK48245.2019.8965513
dc.identifier.isbn9781728139920
dc.identifier.scopus2-s2.0-85079225778en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.urihttps://doi.org/10.1109/UBMYK48245.2019.8965513
dc.identifier.urihttps://hdl.handle.net/20.500.14034/241
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.journal1st International Informatics and Software Engineering Conference: Innovative Technologies for Digital Transformation, IISEC 2019 - Proceedingsen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectbackground correctionen_US
dc.subjectbackground eliminationen_US
dc.subjectCBIRen_US
dc.subjectContent based image retrievalen_US
dc.subjecthistogram enhancementen_US
dc.subjectHSV histogramen_US
dc.subjectobject retrievalen_US
dc.subjectRGB histogramen_US
dc.subjectContent based retrievalen_US
dc.subjectDigital storageen_US
dc.subjectGraphic methodsen_US
dc.subjectGraphical user interfacesen_US
dc.subjectImage analysisen_US
dc.subjectImage segmentationen_US
dc.subjectSoftware engineeringen_US
dc.subjectBackground correctionen_US
dc.subjectbackground eliminationen_US
dc.subjectCBIRen_US
dc.subjectContent based image retrievalen_US
dc.subjectHSV histogramen_US
dc.subjectObject retrievalen_US
dc.subjectRGB histogramen_US
dc.subjectImage enhancementen_US
dc.titleHSV color histogram based ımage retrieval with background eliminationen_US
dc.typeConference Objecten_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
HSV Color Histogram Based Image Retrieval with Background Elimination.pdf
Boyut:
370.96 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text