A classification and regression tree algorithm for heart disease modeling and prediction

Küçük Resim Yok

Tarih

2023

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier Inc.

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Heart disease remains the leading cause of death, such that nearly one-third of all deaths worldwide are estimated to be caused by heart-related conditions. Advancing applications of classification-based machine learning to medicine facilitates earlier detection. In this study, the Classification and Regression Tree (CART) algorithm, a supervised machine learning method, has been employed to predict heart disease and extract decision rules in clarifying relationships between input and output variables. In addition, the study's findings rank the features influencing heart disease based on importance. When considering all performance parameters, the 87% accuracy of the prediction validates the model's reliability. On the other hand, extracted decision rules reported in the study can simplify the use of clinical purposes without needing additional knowledge. Overall, the proposed algorithm can support not only healthcare professionals but patients who are subjected to cost and time constraints in the diagnosis and treatment processes of heart disease. © 2022 The Author(s)

Açıklama

Anahtar Kelimeler

Classification and regression trees, Data mining, Decision rule, Decision trees, Machine learning, Predictive analytics

Künye