Yazar "Zelai, T." seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe High temperature photoluminescence dependence and energy migration of Tb3+-Incorporated K3Y(BO2)6 phosphors(Pergamon-Elsevier Science Ltd, 2024) Souadi, G.; Hakami, O.; Kaynar, U. H.; Coban, M. B.; Aydin, H.; Madkhali, O.; Zelai, T.This study investigates the structural and photoluminescence (PL) characteristics of Tb3+-incorporated K3Y(BO2)(6) (KYBO) phosphors synthesized via a microwave-assisted sol-gel technique. X-ray diffraction (XRD) and Rietveld refinement confirmed the formation of a pure hexagonal phase, with lattice expansion due to Tb3+ doping. PL studies revealed strong green emissions centered at 541 nm, attributed to the D-5(4) -> F-7(5) transitions of Tb3+ ions, with the highest intensity observed at 5 wt% Tb3+. A decrease in emission was observed at higher concentrations due to concentration quenching. Temperature-dependent PL measurements revealed reverse thermal quenching enhancing PL intensity. Chromaticity analysis based on CIE 1931 coordinates showed stable green emission across all concentrations, with a maximum color purity of 89.74% observed for the KYBO:3 wt% Tb3+ sample. The results, along with reverse thermal quenching behavior observed between 470K and 550K, suggest that these phosphors exhibit excellent potential for lighting and display technologies.Öğe Thermoluminescence behaviour and kinetic analysis of a novel Tb3+-Doped LaCa4O(BO3)3 phosphor: Impacts of heating rates and dose(Elsevier Sci Ltd, 2025) Madkhali, O.; Bulcar, K.; Barad, A.; Zelai, T.; Souadi, G.; Alathlawi, Hussain J.; Kaynar, U. H.This study employs kinetic analysis methods to comprehensively understand the thermoluminescence (TL) behaviour of Tb3+-doped LaCa4O(BO3)3 ( LACOB ), applying the Hoogenstraaten and Booth-Bohun-Parfianovitch methods, as well as the T m-T stop and Glow Curve Deconvolution (GCD) techniques. Optimal TL intensity was found at a Tb3+concentration of 2 wt%, beyond which concentration quenching occurred. The complete TL glow curve before preheating displays two peaks at approximately 70 degrees C and 286 degrees C. After preheating, only the 286 degrees C peak remains, due to its greater stability and intensity, making it the primary TL peak relevant for dosimetric applications. As the heating rate increased, the TL glow peaks shifted to higher temperatures and exhibited reduced intensity due to thermal quenching. The TL intensity exhibited superlinear behaviour at lower doses (0.5-20 Gy), followed by nearly linear behaviour at intermediate doses (30-100 Gy), and sublinear behaviour at higher doses. Anomalous fading of the TL signal was observed in LACOB:2 wt%Tb, suggesting competition with radiationless transitions. Activation energy values derived from Hoogenstraaten and Booth-Bohun-Parfianovitch methods showed close alignment, supporting the reliability of the kinetic analysis. The T m-T stop and GCD analyses with preheating identified four distinct TL glow peaks, with activation energies between 1.72 and 1.82 eV. Analysis whole glow curve revealed nine TL glow peaks overall, ranging from 1.08 to 1.82 eV, reflecting a complex trap structure with continuous energy distributions. The GCD method yielded a Figure of Merit (FOM) of 2.67 % with preheating and 2.84 without preheating, indicating a strong fit between experimental and theoretical data in both cases. The material demonstrated excellent stability and reusability, making it a strong candidate for dosimetric applications.Öğe Undoped and Eu doped LaCa₄O(BO₃)₃ phosphors: Thermoluminescence characteristics with a focus on kinetic parameters, anomalous heating rate, and dose response(Elsevier Ltd, 2025) Bulcar, K.; Portakal-Uçar, Z.G.; Zelai, T.; Souadi, G.; Hakami, O.; Kaynar, U.H.; Madkhali, O.The thermoluminescence (TL) properties of LaCa₄O(BO₃)₃ (LACOB) phosphors, both undoped and doped with 0.5 % Eu³⁺, were synthesized using a microwave-assisted sol-gel method and analysed under beta irradiation doses ranging from 0.1 Gy to 700 Gy. The TL glow curves revealed prominent peaks at 100 °C and 285 °C for the Eu-doped sample. Activation energy values were calculated using the Hoogenstraaten and Booth-Bohun-Parfianovitch methods, yielding 1.52 eV and 1.48 eV for the undoped sample, and 2.07 eV and 2.01 eV for the Eu-doped sample, respectively. Eu³⁺ ions introduced deeper traps and enhanced the thermal stability of the material. Anomalous increases in TL intensity with rising heating rates were observed, deviating from typical thermal quenching behaviour; this phenomenon was explained using a semi-localized transition (SLT) model. The TL reusability measurements demonstrated a standard deviation of less than 5 %, indicating consistent and reliable performance across multiple cycles. The TL glow curve deconvolution identified six distinct peaks in the undoped sample, while the Eu-doped sample showed a more complex trap structure with eight peaks, indicating the introduction of additional or modified trapping sites by Eu doping. The figure of merit (FOM) values obtained from the deconvolution analysis were all below 2.5 %, indicating a good fit between the observed and fitted TL signals. These findings suggest that Eu³⁺-doped LACOB is a robust material for radiation dosimetry, with its enhanced sensitivity, stability, and versatility across various dosimetric applications. © 2024 Elsevier Ltd and Techna Group S.r.l.