Yazar "Urtekin, Levent" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Computer aided analysis of biomechanical performance of schanz screw with different additive manufacturing materials used in pertrochanteric fixator on an intertrochanteric femoral fracture (corrosion resistance approach)(Wiley, 2023) Gok, Arif; Urtekin, Levent; Gok, Kadir; Ada, H. Deniz; Nalbant, AsrinThis study examines the use of computer-aided analysis to evaluate the biomechanical performance of Schanz screws made from different additive manufacturing materials (Ti6Al4V, 316 L, Inconel 625, and Inconel 718) in a pertrochanteric fixator for the treatment of intertrochanteric femoral fractures. Intertrochanteric fractures (ITFs) are severe traumas often seen in the elderly population and can lead to serious consequences. The primary objective of ITF surgery is to provide stability and allow for early ambulation and rehabilitation. The Pertrochanteric Fixator is a surgical implant used to treat hip fractures near the greater trochanter, and is attached to the femur with screws. The procedure is performed under general anesthesia and typically takes 1-2 h. Possible complications include infection, nerve injury, and hardware failure. The aim of this study is to evaluate the biomechanical performance of Schanz screw using computer-aided analysis, comparing the effects of various additive manufacturing materials including Ti6Al4V, 316 L, Inconel 625 and Inconel 718 in a pertrochanteric fixator for intertrochanteric femoral fractures. Additionally, this study will also consider the corrosion resistance of these materials to ensure long-term durability and effectiveness in a clinical setting. The stress values mentioned for the implant materials are as follows. Ti6Al4V: 153.33 MPa, 316 L: 180.98 MPa, Inconel 625: 158.94 MPa, Inconel 718: 148.91 MPa. Higher stress values indicate a greater load transfer to the bone, which can potentially lead to stress shielding. Stress shielding occurs when an implant bears a significant portion of the load that should be transferred to the bone. This reduced stress at the fracture site can prevent the healing process, as bones require adequate stress levels for optimal remodeling and regeneration.Öğe Experimental determination of biofilm and mechanical properties of surfaces obtained by CO2 laser gas-assisted nitriding of Ti-6Al-4V alloy(World Scientific Publ Co Pte Ltd, 2022) Urtekin, Levent; Aydın, Şeyhmus; Sevim, Ali; Gök, Kadir; Uslan, IbrahimThe nitriding process is a surface treatment that improves the surface properties of titanium alloys and increases wear/corrosion resistance. This study investigates the structural and mechanical property changes in titanium alloy after nitriding. Micro-hardness differences between the nitrided and non-nitrided surface and morphological changes on the surface were determined. In addition to evaluating the effect of vanadium and aluminum ions on the nonnitrided surface, the impact of nitrided and non-nitrided surfaces on biofilm layer formation was investigated. It was determined that the TiN layer formed on the nitrided surface showed superior properties to its non-nitrided surface in the biofilm tests performed for 6 h. As a result of the tensile tests, it can be said that the nitriding process increases the elasticity module of the Ti-6Al-4V alloy and provides the material to have a more rigid structure. It was also analyzed using finite element analysis (FEA) of mechanical behaviors of the test sample under the tension loads.Öğe INVESTIGATION OF THE EFFECT OF ELBOW PIPES OF TI6AL4V, 304 STAINLESS STEEL, AZ91 MATERIALS ON EROSION CORROSION BY FINITE ELEMENT ANALYSIS(Czech Technical Univ Prague, 2024) Gok, Kadir; Danismaz, Merdin; Urtekin, Levent; Ada, Hediye Deniz; Gok, ArifCorrosion is the degradation of metals caused by chemical or electrochemical reactions with their environment. As a result of these reactions, undesirable conditions occur in the physical, chemical, mechanical and electrical properties of metals. These conditions cause parts made of metallic materials to become unusable. Erosion corrosion is one of the most common types of corrosion in fluid transfer. There are several methods for preventing erosion corrosion. First of all, some precautions should be taken to prevent wear. Intervention is very important in terms of cost, especially at the design stage. Measures such as wide angle bends, wall thickness of wear-resistant material and corrosion allowance can be taken, especially in applications where the flow direction needs to be changed. The aim of this study was to determine the effect of liquid fluid on erosion corrosion in Ti6Al4V, 304 stainless steel and MgAz91 elbow pipes by using the computer aided and finite element based AnsysWorkbench Explicit Dynamics module. For the design of the elbow pipe, SolidWorks was used for 3D studies. In the analysis of the pipe, the suitability of the pipe for the 3D model was examined. The effect of fluid rotation on the pipe walls and the effect of the pipe material on the flow along the pipe were determined. The standard k-e model based on the velocity-pressure relationship in continuous and steady flow was used for the flow calculations. The flow simulation showed that for all models the flow accumulation after rotation was more concentrated on the opposite walls of the pipe, as expected. The results obtained showed that the deformation in MgAZ91 material had the highest value at 9.14 x 10-8 mm. This situation has been interpreted to mean that it may vary depending on the flow rate automation. Designs on the old designs in the erosion structure of the liquid that occurs in the pipes with a new product design in the analysis design.