Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Seymen, Omer Faruk" seçeneğine göre listele

Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Business analytics in customer lifetime value: an overview analysis
    (Wiley Periodicals, Inc, 2025) Doğan, Onur; Hızıroğlu, Abdulkadir; Pisirgen, Ali; Seymen, Omer Faruk
    In customer-oriented systems, customer lifetime value (CLV) has been of significant importance for academia and marketing practitioners, especially within the scope of analytical modeling. CLV is a critical approach to managing and organizing a company's profitability. With the vast availability of consumer data, business analytics (BA) tools and approaches, alongside CLV models, have been applied to gain deeper insights into customer behaviors and decision-making processes. Despite the recognized importance of CLV, there is a noticeable gap in comprehensive analyses and reviews of BA techniques applied to CLV. This study aims to fill this gap by conducting a thorough survey of the state-of-the-art investigations on CLV models integrated with BA approaches, thereby contributing to a research agenda in this field. The review methodology consists of three main steps: identification of relevant studies, creating a coding plan, and ensuring coding reliability. First, relevant studies were identified using predefined keywords. Next, a coding plan-one of the study's significant contributions-was developed to evaluate these studies comprehensively. Finally, the coding plan's reliability was tested by three experts before being applied to the selected studies. Additionally, specific evaluation criteria in the coding plan were implemented to introduce new insights. This study presents exciting and valuable results from various perspectives, providing a crucial reference for academic researchers and marketing practitioners interested in the intersection of BA and CLV.
  • [ X ]
    Öğe
    Customer Behavior Analysis by Intuitionistic Fuzzy Segmentation: Comparison of Two Major Cities in Turkey
    (World Scientific Publ Co Pte Ltd, 2022) Dogan, Onur; Seymen, Omer Faruk; Hiziroglu, Abdulkadir
    The vast quantity of customer data and its ubiquity, as well as the inabilities of conventional segmentation tools, have diverted researchers in search of powerful segmentation techniques for generating managerially meaningful information. Due to its noteworthy practical use, soft computing-based techniques, especially fuzzy clustering, can be considered one of those contemporary approaches. Although there have been various fuzzy-based clustering applications in segmentation, intuitionistic fuzzy sets that have the complimentary feature have appeared in limited studies, especially in a comparative context. Therefore, this study extends the current body of the pertaining literature by providing a comparative assessment of intuitionistic fuzzy clustering. The comparison was carried out with two other well-known segmentation techniques, k-means and fuzzy c-means, based on transaction data that belong to Turkey's two major cities. Over 10,000 records of customers' data were processed for segmentation purposes, and the comparative approaches were presented. According to the results, the intuitionistic fuzzy clustering approach outperformed the other methods in terms of the clustering efficiency index being utilized. The validity of the segmentation structure obtained by the superior approach was ensured via nonsegmentation variables. The comparative assessment and the potential managerial implications could be considered as a contribution to the corresponding literature. This study also compares the effects of the different parameter values used in the proposed model.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Customer Churn Prediction Using Ordinary Artificial Neural Network and Convolutional Neural Network Algorithms: A Comparative Performance Assessment
    (Gazi Univ, 2023) Seymen, Omer Faruk; Olmez, Emre; Dogan, Onur; Orhan, E. R.; Hiziroglu, Abdulkadir
    Churn studies have been used for many years to increase profitability as well as to make customer -company relations sustainable. Ordinary artificial neural network (ANN) and convolution neural network (CNN) are widely used in churn analysis due to their ability to process large amounts of customer data. In this study, an ANN and a CNN model are proposed to predict whether customers in the retail industry will churn in the future. The models we proposed were compared with many machine learning methods that are frequently used in churn prediction studies. The results of the models were compared via accuracy classification tools, which are precision, recall, and AUC. The study results showed that the proposed deep learning-based churn prediction model has a better classification performance. The CNN model produced a 97.62% of accuracy rate which resulted in a better classification and prediction success than other compared models.

| İzmir Bakırçay Üniversitesi | Kütüphane | Açık Bilim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Gazi Mustafa Kemal Mahallesi, Kaynaklar Caddesi Seyrek,Menemen, İzmir, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim