Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Kaynar, U.H." seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    Enhanced luminescence and quenching mechanisms in Na⁺ Co-doped K₇CaY₂(B₅O₁₀)₃:Tb3+ phosphors under UV radiation
    (Elsevier Ltd, 2025) Alsam, Amani A.; Kaynar, U.H.; Aydin, H.; Coban, M.B.; Canimoglu, A.; Can, N.
    This study investigates the structural and luminescent properties UV radiation of Tb³⁺-doped K₇CaY₂(B₅O₁₀)₃ (KCYBO) phosphors prepared using a microwave-assisted sol-gel method, with a focus on the impact of Na⁺ co-doping. Tb³⁺ ions were effectively integrated as evidenced by X-ray diffraction (XRD) and Rietveld analysis, without disrupting the crystal structure. Photoluminescence (PL) analysis showed intense green emissions at 542 nm, which are due to the 5D₄ → 7F₅ transition in Tb³⁺. Optimal luminescence was observed at 3 wt% Tb³⁺, beyond which concentration quenching effect was driven by non-radiative cross-relaxation between adjacent Tb³⁺ ions. Na⁺ co-doping enhanced PL intensity by improving energy transfer and reducing non-radiative losses. CIE chromaticity coordinates demonstrated a tunable color shift towards warmer tones with increasing Na⁺ concentration. Thermal stability was assessed through the Arrhenius equation, with an activation energy of 0.31 eV, indicating the material's potential for high-temperature optoelectronic applications. © 2024 Elsevier Ltd
  • Yükleniyor...
    Küçük Resim
    Öğe
    Undoped and Eu doped LaCa₄O(BO₃)₃ phosphors: Thermoluminescence characteristics with a focus on kinetic parameters, anomalous heating rate, and dose response
    (Elsevier Ltd, 2025) Bulcar, K.; Portakal-Uçar, Z.G.; Zelai, T.; Souadi, G.; Hakami, O.; Kaynar, U.H.; Madkhali, O.
    The thermoluminescence (TL) properties of LaCa₄O(BO₃)₃ (LACOB) phosphors, both undoped and doped with 0.5 % Eu³⁺, were synthesized using a microwave-assisted sol-gel method and analysed under beta irradiation doses ranging from 0.1 Gy to 700 Gy. The TL glow curves revealed prominent peaks at 100 °C and 285 °C for the Eu-doped sample. Activation energy values were calculated using the Hoogenstraaten and Booth-Bohun-Parfianovitch methods, yielding 1.52 eV and 1.48 eV for the undoped sample, and 2.07 eV and 2.01 eV for the Eu-doped sample, respectively. Eu³⁺ ions introduced deeper traps and enhanced the thermal stability of the material. Anomalous increases in TL intensity with rising heating rates were observed, deviating from typical thermal quenching behaviour; this phenomenon was explained using a semi-localized transition (SLT) model. The TL reusability measurements demonstrated a standard deviation of less than 5 %, indicating consistent and reliable performance across multiple cycles. The TL glow curve deconvolution identified six distinct peaks in the undoped sample, while the Eu-doped sample showed a more complex trap structure with eight peaks, indicating the introduction of additional or modified trapping sites by Eu doping. The figure of merit (FOM) values obtained from the deconvolution analysis were all below 2.5 %, indicating a good fit between the observed and fitted TL signals. These findings suggest that Eu³⁺-doped LACOB is a robust material for radiation dosimetry, with its enhanced sensitivity, stability, and versatility across various dosimetric applications. © 2024 Elsevier Ltd and Techna Group S.r.l.

| İzmir Bakırçay Üniversitesi | Kütüphane | Açık Bilim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Gazi Mustafa Kemal Mahallesi, Kaynaklar Caddesi Seyrek,Menemen, İzmir, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim