Yazar "Er, Orhan" seçeneğine göre listele
Listeleniyor 1 - 5 / 5
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe AFWDroid- Deep feature extraction and weighting for android malware detection(2021) Er, Orhan; Arslan, Recep Sinan; Ölmez, EmreAndroid malware detection is a critical and important problem that must be solved for a widely used operating system. Conventional machine learning techniques first extract some features from applications, then create classifiers to distinguish between malicious and benign applications. Most of the studies available today ignore the weighting of the obtained features. To overcome this problem, this study proposes a new software detection method based on weighting the data in feature vectors to be used in classification. To this end, firstly, the manifest file was read from the Android application package. Different features such as activities, services, permissions were extracted from the file, and for classification, a selection was made among these features. The parameters obtained as a result of selection were optimized by the deep neural network model. Studies revealed that through feature selection and weighting, better performance values could be achieved and more competitive results could be obtained in weight-sensitive classification.Öğe A CNN-Based Novel Approach for Classification of Sacral Hiatus with GAN- Powered Tabular Data Set(Kaunas Univ Technology, 2023) Kilic, Ferhat; Korkmaz, Murat; Er, Orhan; Altin, Cemilepidural anaesthesia is usually the most well-known technique in obstetrics to deal with chronic back pain. Due to variations in the shape and size of the sacral hiatus (SH), its classification is a crucial and challenging task. Clinically, it is required in trauma, where surgeons must make fast and correct selections. Past studies have focused on morphometric and statistical analysis to classify it. Therefore, it is vital to automatically and accurately classify SH types through deep learning methods. To this end, we proposed the Multi-Task Process (MTP), a novel classification approach to classify the SH MTP that initially uses a small medical tabular data set obtained by manual feature extraction on computed tomography scans of the sacrums. Second, it augments the data set synthetically through a Generative Adversarial Network (GAN). In addition, it adapts a two-dimensional (2D) embedding algorithm to convert tabular features into images. Finally, it feeds images into Convolutional Neural Networks (CNNs). The application of MTP to six CNN models achieved remarkable classification success rates of approximately 90 % to 93 %. The proposed MTP approach eliminates the small medical tabular data problem that results in bone classification on deep models.Öğe A comparative study on COVID-19 prediction using deep learning and machine learning algorithms: a case study on performance analysis(2022) Arslan, Hilal; Er, OrhanCOVID-19 disease has been the most important disease recently and has affected serious number of people in the world. There is not proven treatment method yet and early diagnosis of COVID-19 is crucial to prevent spread of the disease. Laboratory data can be easily accessed in about 15 minutes, and cheaper than the cost of other COVID-19 detection methods such as CT imaging and RT-PCR test. In this study, we perform a comparative study for COVID-19 prediction using machine learning and deep learning algorithms from laboratory findings. For this purpose, nine different machine learning algorithms including different structures as well as deep neural network classifier are evaluated and compared. Experimental results conduct that cosine k-nearest neighbor classifier achieves better accuracy with 89% among other machine learning algorithms. Furthermore, deep neural network classifier achieves an accuracy of 90.3% when one hidden layer including 60 neurons is used to detect COVID-19 disease from laboratory findings data.Öğe A comparative study on prediction of survival event of heart failure patients using machine learning algorithms(Springer London Ltd, 2022) Karakuş, Mücella Özbay; Er, OrhanCardiovascular diseases cause approximately 17 million deaths each year and 31% of deaths worldwide. These diseases generally occur as myocardial infarction and heart failure. The survival status, which we used as a target in our classification study, indicates that the patient died or survived before the end of the follow-up period, which is a mean of 130 days. Various machine learning classifiers have been preferred to both predict survival of patients and rank the characteristics corresponding to the most important risk factors. For this purpose, the data set that is occurred totally 299 samples is traditionally divided into 70% for training and 30% for test cluster to be used in machine learning algorithms, with have been analyzed with many methods such as Artificial Neural Networks, Fine Gaussian SVM, Fine KNN, Weighted KNN, Subspace KNN, Boosted Trees, and Bagged Trees. As a result, according to the data obtained, it has been seen that there are algorithms that can predict heart failure diagnosis with full accuracy (100%). Thus, it was concluded that it is appropriate to use machine learning algorithms to predict whether a heart failure patient will survive. This study has the potential to be used as a new supportive tool for doctors when predicting whether a heart failure patient will survive.Öğe Machine learning approaches in the interpretation of endobronchial ultrasound images: a comparative analysis(Springer, 2023) Koseoglu, Fatos Dilan; Alici, Ibrahim Onur; Er, OrhanBackgroundThis study explores the application of machine learning (ML) in analyzing endobronchial ultrasound (EBUS) images for the detection of lymph node (LN) malignancy, aiming to augment diagnostic accuracy and efficiency. We investigated whether ML could outperform conventional classification systems in identifying malignant involvement of LNs, based on eight established sonographic features.MethodsRetrospective data from two tertiary care hospital bronchoscopy units were utilized, encompassing healthcare reports of patients who had undergone EBUS between January 2017 and March 2023. The ML model was trained and tested using MATLAB, with 80% of the data allocated for training/validation, and 20% for testing. Performance was evaluated based on validation and testing accuracy, and receiver operating characteristic curves with comparing trained models and existing classification rules.ResultsThe study analyzed 992 LNs, with 42.3% malignancy prevalence. Malignant LNs showed characteristic features such as larger size and distinct margins. The fine tuned models achieved testing accuracies of 95.9% and 96.4% for fine Gaussian SVM and KNN, respectively. Corresponding AUROC's were 0.955 and 0.963, outperforming other similar studies and conventional analyses.ConclusionFine tuned ML applications like SVM and KNN, can significantly enhance the analysis of EBUS images, improving diagnostic accuracy.