Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "De Leoni, Massimiliano" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Parallelism-based session creation to identify high-level activities in event log abstraction
    (Springer International Publishing Ag, 2024) Doğan, Onur; De Leoni, Massimiliano
    Process mining utilizes event data to gain insights into the execution of processes. While techniques are valuable, their effectiveness may be hindered when dealing with highly complex processes that have a vast number of variants. Additionally, because the recorded events in information systems are at a low-level, process mining techniques may not align with the higher-level concepts understood at the business level. Without abstracting event sequences to higher-level concepts, the outcomes of process mining, such as discovering a model, can become overly complex and challenging to interpret, rendering them less useful. Some research has been conducted on event abstraction, often requiring significant domain knowledge that may not be readily accessible. Alternatively, unsupervised abstraction techniques may yield less accurate results and rely on stronger assumptions. This paper introduces a technique that addresses the challenge of limited domain knowledge by utilizing a straightforward approach. The technique involves dividing traces into batch sessions, taking into account relationships between subsequent events. Each session is then abstracted as a single high-level activity execution. This abstraction process utilizes a combination of automatic clustering and visualization methods. The proposed technique was evaluated using a randomly generated process model with high variability. The results demonstrate the significant advantages of the proposed abstraction in effectively communicating accurate knowledge to stakeholders.

| İzmir Bakırçay Üniversitesi | Kütüphane | Açık Bilim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Gazi Mustafa Kemal Mahallesi, Kaynaklar Caddesi Seyrek,Menemen, İzmir, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim