Yazar "Alim, Ece" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Transauricular vagal nerve stimulation suppresses inflammatory responses in the gut and brain in an inflammatory bowel disease model(Wiley, 2024) Atalar, Kerem; Alim, Ece; Yigman, Zeynep; Belen, Hayrunnisa Bolay; Erten, Fusun; Sahin, Kazim; Soylu, AyseInflammatory bowel disease (IBD) encompasses Crohn's disease (CD) and ulcerative colitis (UC), is a major health problem on a global scale and its treatment is unsatisfactory. We aimed to investigate the effects of transauricular vagal nerve stimulation (tVNS) on inflammation in rats with IBD induced by trinitrobenzene sulfonic acid (TNBS). A total of 36 adult female Sprague-Dawley rats were given TNBS, or vehicle, and tVNS, or sham, every other day for 30 min for 10 days. Postmortem macroscopic and microscopic colon morphology were evaluated by histological staining. Additionally, IL-1 beta, IL-6, IL-10, and TNF-alpha cytokine levels in the colon and the brain were evaluated by immunohistochemistry and western blotting analysis. TNBS induced epithelial damage, inflammation, ulceration, and thickened mucosal layer in the colonic tissues. Administration of tVNS significantly ameliorated the severity of TNBS-induced tissue damage and inflammatory response. TNBS also alters pro-inflammatory and anti-inflammatory balance in the brain tissue. TVNS application significantly suppressed the protein levels of pro-inflammatory cytokines, namely IL-1 beta, IL-6, and TNF- alpha while augmenting the level of anti-inflammatory cytokine IL-10 in the colonic and the brain tissue. We have shown that TNBS-mediated colonic inflammation and tissue damage are associated with neuroinflammatory responses in the brain tissue. Also demonstrated for the first time that neuroinflammatory response in the gut-brain axis is suppressed by tVNS in the IBD model. Non-invasive tVNS stands out as a new potential treatment option for types of IBD.Öğe tVNS alters inflammatory response in adult VPA-induced mouse model of autism: evidence for sexual dimorphism(Wiley, 2025) Dagidir, Hale Gok; Bukan, Neslihan; Bahcelioglu, Meltem; Calikusu, Aysen; Alim, Ece; Dizakar, Saadet Ozen; Topa, ElifAutism is a neurodevelopmental disorder with limited treatment alternatives and which incidence is increasing. Some research suggests that vagus nerve simulation might lead to the reduction of certain symptom. Therefore, we aimed to examine the effect of bilateral transcutaneous auricular vagus nerve stimulation (tVNS) on the inflammatory response in an adult valproic acid (VPA) induced mouse (C57BL6) model of autism for the first time. The autism model was induced by oral VPA administration (600 mgkg(-1)) to C57BL/6 pregnant mice on E12.5 days. The study included three groups: the VPA Transcutaneous Auricular Stimulation Group (VPA + tVNS), the VPA Control Group (VPA + sham), and the Healthy Control Group (Control + sham). Each group included 16 mice (8 M/8 F). Our results show that serum IL-1 beta and IL-6 levels were significantly higher in male VPA-exposed mice than controls. However, IL-1 beta was significantly lower, and IL-6, TNF- alpha, and IL-22 were not different in female VPA-exposed mice compared to the control group. Brain NLRP3 levels were significantly higher in both sexes in the VPA autism model (P < 0.05). tVNS application increased brain NLRP3 levels in both sexes and reduced serum IL-1 beta levels in male mice. We conclude that cytokine dysregulation is associated with the VPA-induced adult autism model, and the inflammatory response is more pronounced in male mice. tVNS application altered the inflammatory response and increased brain NLPR3 levels in both sexes. Further studies are needed to understand the beneficial or detrimental role of the inflammatory response in autism and its sexual dimorphism.