Yazar "Abualigah, Laith" seçeneğine göre listele
Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Chaotic quasi-oppositional arithmetic optimization algorithm for thermo-economic design of a shell and tube condenser running with different refrigerant mixture pairs(Springer London Ltd, 2022) Turgut, Mert Sinan; Turgut, Oğuz Emrah; Abualigah, LaithThis theoretical research study proposes a novel Chaotic Quasi-Oppositional Arithmetic Optimization Algorithm (COAOA) for thermo-economic optimization of a shell and tube condenser working with refrigerant mixtures. Arithmetic Optimization Algorithm (AOA) is a recently emerged metaheuristic algorithm considering different mathematical operators to optimize the candidate solutions over a wide range of search domains. The effectiveness the COAOA is assessed by applying it to a set of benchmark optimization problems and comparing the obtained solutions with that of the original AOA and its quasi-oppositional variant. The COAOA has been employed to acquire the minimum value of the total annual cost of the shell and tube condenser by iteratively varying nine decision variables of mass flow rate, shell diameter, the tube inside diameter, tube length, number of tube passes, tube layout, tube pitch ratio, the total number of baffles, and diameter ratio. Three different case studies are solved using different refrigerant pairs used for in-tube flow to show the proposed metaheuristic optimizer's efficiency and effectivity on real-world mixed-integer optimization problem. Optimal results retrieved for different mixture pairs with varying mass fractions are compared with each other, and parametric configuration yielding the minimum total cost is decided. Finally, a comprehensive sensitivity analysis is performed to investigate the influences of the design variables over the considered problem objective. Overall analysis results indicate that COAOA can be an excellent optimizer to obtain a shell and tube condenser's optimal configuration within a reasonable computation time.